The Structure and Evolution of Vertebrate Fibrinogen: A Comparison of the Lamprey and Mammalian Proteins

  • Russell F. Doolittle
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)

Abstract

The blood plasmas of all vertebrate animals contain a six-chained fibrinogen molecule that is polymerized into fibrin upon the thrombin-catalyzed removal of fibrinopeptides. In all cases, also, the polymerization reaction is inhibited by Gly-Pro-Arg-ending peptides. The complete amino acid sequences of human, rat and lamprey fibrinogens are known, permitting an assessment of just which sequence features are essential for polymerization. To an extent, the same approach can also be applied to the associated phenomena of fibrin cross-linking by factor XIII, plasminogen and plasminogen activator binding, and vessel wall-fibrinogen interactions.

Keywords

Carbohydrate Lysine Glutamine Disulfide Tryptophan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohonus, V., Doolittle, R. F., Pontes, M., and Strong, D. D. 1986, Complementary DNA sequence of lamprey fibrinogen β chain. Biochemistry, 25:6512–6516.PubMedCrossRefGoogle Scholar
  2. Chen, R., and Doolittle, R. F., 1971, γ- γ Cross-linking sites in human and bovine fibrin. Biochemistry, 10:4486–4491.CrossRefGoogle Scholar
  3. Cottrell, B. A., Strong, D. D., Watt, K. W. K., and Doolittle, R. F., 1979, Amino acid sequence studies on the α-chain of human fibrinogen. Exact location of cross-linking acceptor sites. Biochemistry, 18:5405–5410.PubMedCrossRefGoogle Scholar
  4. Crabtree, G. R., and Kant, J. A., 1982, Organization of the rat y-fibrinogen gene: alternative mRNA splice patterns produce the γ A and γ B (gamma’) chains of fibrinogen. Cell, 31:159–166.PubMedCrossRefGoogle Scholar
  5. Crabtree, G. R., Comeau, C. M., Fowlkes, D. M., Fornace, A. J., Jr., Malley, J. D., and Kant, J. A., 1985, Evolution and structure of the fibrinogen genes. Random insertion of introns or selective loss? J. Mol. Biol., 185:1–19.PubMedCrossRefGoogle Scholar
  6. Doolittle, R. F., 1965, Difference in the clotting of lamprey fibrinogen by lamprey and bovine thrombins. Biochem. J., 94:735–741.PubMedGoogle Scholar
  7. Doolittle, R. F., 1973, Structural aspects of the fibrinogen-fibrin conversion. Advances in Protein Chemistry, 27:1–109.PubMedCrossRefGoogle Scholar
  8. Doolittle, R. F. and Surgenor, D. M., 1962, Blood coagulation in fish. Am. J. Physiol., 203:964–970.PubMedGoogle Scholar
  9. Doolittle, R. F. and Cottrell, B. A., 1974, Lamprey fibrinopeptide is a glycopeptide. Biochem. Biophys. Res. Commun., 60:1090–1096.PubMedCrossRefGoogle Scholar
  10. Doolittle, R. F., and Wooding, G. L., 1974, The subunit structure of lamprey fibrinogen and fibrin. Biochim. Biophys. Acta, 271:277–282.Google Scholar
  11. Doolittle, R. F., Oncley, J. L. and Surgenor, D. M., 1962, Species differences in the interaction of thrombin and fibrinogen. J. Biol. Chem., 237:3123–3127.PubMedGoogle Scholar
  12. Doolittle, R. F., Cassman, K. G., Cottrell, B. A., Friezner, S. J., and Takagi, T., 1977a, Amino acid sequence studies on the α -chain of human fibrinogen. The covalent structure of the α-chain portion of fragment D. Biochemistry, 16:1710–1715.CrossRefGoogle Scholar
  13. Doolittle, R. F., Cassman, K. G., Cottrell, B. A., and Friezner, S. J., 1977b, Amino acid sequence studies on the α -chain of human fibrinogen. Isolation and characterization of two linked α -chain cyanogen bromide fragments from fully cross-linked fibrin. Biochemistry, 16:1715–1719.CrossRefGoogle Scholar
  14. Doolittle, R. F., Watt, K. W. K., Cottrell, B. A., Strong, D. D., and Riley, M., 1979a., The amino acid sequence of the α -chain of human fibrinogen Nature, 280:464–468.CrossRefGoogle Scholar
  15. Greininger, G., Plant, P. W. and Kossoff, H. S., 1984, Glycosylation of A α chains in chicken fibrinogen. Biochemistry, 23:5888–5892.CrossRefGoogle Scholar
  16. Henschen, A., and Lottspeich, F., 1977, Sequence homology between β-chain and γ-chain in human fibrin. Thrombosis Research, 11:869–880.PubMedCrossRefGoogle Scholar
  17. Henschen, A., Lottspeich, F., Kehl, M. and Southan, C., 1983, Covalent structure of fibrinogen. Ann. N.Y. Acad. Sci., 408:28–43.PubMedCrossRefGoogle Scholar
  18. Huseby, R. M., Mosesson, M. W. and Murray, M., 1970, Studies of the amino acid composition and conformation of human fibrinogen: comparison of fractions I-4 and I-8. Physiol. Chem. & Physics, 2:374–384.Google Scholar
  19. Ichinose, A., Takio, K., and Fujikawa, K., 1986, Localization of the binding site of tissue-type plasminogen activator to fibrin. J. Clin. Invest., 78:163–169.PubMedCrossRefGoogle Scholar
  20. Jue, R. A., and Doolittle, R. F., 1985, Determination of the relative positions of amino acids by partial specific cleavages of end-labeled proteins. Biochemistry, 24:162–170.PubMedCrossRefGoogle Scholar
  21. Langer, B. G., Hong, S. K., Schmelzer, C. H., and Bell, W. R., 1987, Deglycosylation of a native, protease-sensitive glycoprotein by peptide N-glycosidase F without protease inhibitors. Anal. Biochem., 166:212–217.PubMedCrossRefGoogle Scholar
  22. Laudano, A. P., and Doolittle, R. F., 1980, Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, numbers of binding sites and species differences. Biochemistry, 19:1013–1019.PubMedCrossRefGoogle Scholar
  23. Laudano, A. P., Cottrell, B. A. and Doolittle, R. F., 1983, Synthetic peptides modeled on fibrin polymerization sites. Ann. N.Y. Acad. Sci., 408:315–329.PubMedCrossRefGoogle Scholar
  24. Laurell, C.-B., and Thulin, E., 1975, Complexes in human plasma between α1-antitrypsin and IgA, and α1-antitrypsin and fibrinogen. Scand. J. Immunol., 4:Suppl. 2, 7–12.CrossRefGoogle Scholar
  25. McKee, P. A., Mattock, P., and Hill, R. L., 1970, Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proc. Natl. Acad. Sci., USA, 66:738–774.PubMedCrossRefGoogle Scholar
  26. Medved’, L., Gorkun, O. V., Manyakov, V. F., and Belitser, V. A., 1985, The role of fibrinogen α C-domains in the fibrin assembly process. FEBS Lett., 181:109–112.PubMedCrossRefGoogle Scholar
  27. Miyata, T., Furukawa, K., Iwanaga, S., Takamatsu, J., and Saito, H.,1989, Fibrinogen Nagoya, a replacement of glutamine-329 by arginine in the y-chain that impairs the polymerization of fibrin monomer. J. Biochem., 105:10–14.PubMedGoogle Scholar
  28. Murtaugh, P. A., Halver, J. E., Lewis, M. S. and Gladner, J. A., 1974, Cross-linking reactions of lamprey fibrinogen and fibrin. Biochim. Biophys. Acta, 359:415–420.PubMedCrossRefGoogle Scholar
  29. Olexa, S. A., and Budzynski, A. Z., 1981, Localization of a fibrin polymerization site. J. Biol. Chem., 256:3544–3549.PubMedGoogle Scholar
  30. Peerschke, E. I. B., and Galanakis, D. K., 1987, The synthetic RGDS peptide inhibits the binding of fibrinogen lacking intact α chain carboxy terminal sequences to human blood platelets. Blood, 69:950–952.PubMedGoogle Scholar
  31. Shainoff, J. R., and Dardik, B. N., 1979, Fibrinopeptide B and aggregation of fibrinogen. Science, 204:200–202.PubMedCrossRefGoogle Scholar
  32. Shimizu, A. and Doolittle, R. F., 1989, Identification of fibrin polymerization site by photoaffinity labeling. XII Intern. Cong. Thromb. Haem., Tokyo (abstract).Google Scholar
  33. Sobel, J. H., Thibodeau, C. A., and Canfield, R. E., 1988, Early alpha chain crosslinking in human fibrin preparations. Thrombosis & Haemostasis, 60:153–159.Google Scholar
  34. Strong, D. D., Moore, M., Cottrell, B. A., Bohonus, V. L., Pontes, M., Evans, B., Riley, M., and Doolittle, R. F., 1985, Lamprey fibrinogen γ chain: cloning, cDNA sequencing, and general characterization. Biochemistry, 24:92–101.PubMedCrossRefGoogle Scholar
  35. Takagi, T., and Doolittle, R. F., 1975, Amino acid sequence studies on the α-chain of human fibrinogen: location of four plasmin attack points and a covalent crosslinking sites. Biochemistry, 14:5149–5156.PubMedCrossRefGoogle Scholar
  36. Takagi, T., and Doolittle, R. F., 1975, Amino acid sequence of the carboxy-terminal cyanogen bromide peptide of the human fibrinogen ß chain: homology with the corresponding y-chain peptide and presence in fragment D. Biochim. Biophys. Acta,386:617–622.PubMedCrossRefGoogle Scholar
  37. Timmons, S., Bednarek, M. A., Kloczewiak, M., and Hawiger, J., 1989, Antiplatelet “hybrid” peptides analogous to receptor recognition domains on γ and α chains of human fibrinogen. Biochemistry, 28:2919–2923.PubMedCrossRefGoogle Scholar
  38. Varadi, A., and Scheraga, H. A., 1986, Localization of segments essential for polymerization and for calcium binding in the γ -chain of human fibrinogen. Biochemistry, 25:519–528.PubMedCrossRefGoogle Scholar
  39. Voskuilen, M., Vermond, A., Veeneman, G. H., van Boom, J. H., Klasen, E. A., Zegers, N. D., and Nieuwenhuizen, W., 1987, Fibrinogen lysine residue A α 157 plays a crucial role in the fibrin-induced acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator. J. Biol. Chem., 262:5944–5946.PubMedGoogle Scholar
  40. Wang, Y. Z., Patterson, J., Gray, J. E., Yu, C., Cottrell, B. A., Shimizu, A., Graham, D., Riley, M., and Doolittle, R. F., 1989, Complete sequence of the lamprey fibrinogen α chain. Biochemistry, 28:9801–9806.PubMedCrossRefGoogle Scholar
  41. Watt, K. W. K., Takagi, T., and Doolittle, R. F., 1978, Amino acid sequence of the ß-chain of human fibrinogen: homology with the γ -chain. Proc. Natl. Acad. Sci., USA, 75:1731–1735.PubMedCrossRefGoogle Scholar
  42. Wolfenstein-Todel, C., and Mosesson, M. W., 1981, Carboxy-terminal amino acid sequence of a human fibrinogen γ -chain variant (γ ‘). Biochemistry, 20:6146–6149.PubMedCrossRefGoogle Scholar
  43. Xu, X. and Doolittle, R. F., 1990, Presence of a fibrinogen-like sequence in an echinoderm. Proc. Natl. Acad. Sci., USA, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Russell F. Doolittle
    • 1
  1. 1.Center for Molecular Genetics M-034University of CaliforniaSan Diego La JollaUSA

Personalised recommendations