Skip to main content

An Implicit Fluid-Particle Model for Ion Beam-Plasma Interactions

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

A new method for modeling the hydrodynamic behavior of collisional plasmas is presented. The numerical model uses finite-sized “particles” in a full particle-in-cell (PIC) representation of the plasma, where full is used to emphasize that a complete characterization of the plasma is obtained solely with the properties carried by the particles. Plasma motion is modeled by integrating the equations of motion for each particle implicitly in time on an arbitrarily-adaptive computational grid. The full PIC method is a conservative scheme that has no numerical diffusion and is ideally suited for modeling distorted and unstable hydrodynamic fluid flow. Computational results of a shock tube problem, the Rayleigh-Taylor (R-T) instability, and planar heavy-ion-driven ICF target implosions illustrate the properties of the method.

Work performed under the auspices of the United States Department of Energy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Buchwald, et al., Laser and Part. Beams 1, 335 (1983).

    Article  Google Scholar 

  2. S. Kawata and K. Niu, J. Phys. Soc. Jap. 53, 3416 (1984).

    Article  Google Scholar 

  3. I. Yamagushi, S. Kawata, and K. Niu, IPPJ-725, Institute of Plasma Physics, Nagoya University (1985).

    Google Scholar 

  4. S. Nakajima and K. Niu, IPPJ-769, Institute of Plasma Physics, Nagoya University (1986).

    Google Scholar 

  5. R. C. Arnold and J. Meyer-ter-Vehn, MPQ-113, Max Planck Institut Für Quantenoptik (1986).

    Google Scholar 

  6. R. L. McCrory, R. L. Morse, and K. A. Taggart, Nucl. Sei. Engr. 64, 163 (1977).

    Google Scholar 

  7. Z. Zinamon, E. Nardi, and E. Peleg, Phys. Rev. Lett. 34, 1262 (1975).

    Article  Google Scholar 

  8. D. Lackner-Russo and P. Mulser, PLF-32, Max Planck Gesellschaft zur Foerderung der Wissenschaften, F. R. Germany (1980).

    Google Scholar 

  9. M. Tamba, et al, Laser and Part. Beams 1, 121 (1983).

    Article  Google Scholar 

  10. P. C. Thompson and P. D. Roberts, Laser and Part. Beams 2, 13 (1984).

    Article  Google Scholar 

  11. S. Atzeni, Comp. Phys. Commun. 43, 107 (1986).

    Article  Google Scholar 

  12. G. B. Zimmerman, UCRL-74811, Lawrence Livermore National Laboratory (1973).

    Google Scholar 

  13. G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. 2, 51 (1975).

    Google Scholar 

  14. J. Norton, Private Communication, Los Alamos National Laboratory (1987).

    Google Scholar 

  15. W. D. Schulz, Meth. Comp. Phys. 3, 1 (1964).

    Google Scholar 

  16. C. P. Verdon, R. L. McCrory, R. L. Morse, G. R. Baker, D. I. Meiron, and S. A. Orszag, Phys. Fluids 25, 1653 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. J. Fritts, W. P. Crowley, and H. Trease, eds., The Free-Lagrange Method, (Springer-Verlag, New York, 1985), Proc. First Inter. Conf. on Free-Lagrange Methods, 1985.

    MATH  Google Scholar 

  18. W. F. Noh, Meth. Comp. Phys. 3, 117 (1964).

    Google Scholar 

  19. R. M. Frank and R. B. Lazarus, Meth. Comp. Phys. 3, 47 (1964).

    Google Scholar 

  20. F. H. Harlow and M. Evans, LAMS-1956, Los Alamos National Laboratory (1955).

    Google Scholar 

  21. F. H. Harlow, J. Assoc. Comput. Mach. 4, 137 (1957).

    Article  Google Scholar 

  22. M. W. Evans and F. H. Harlow, LA-2139, Los Alamos National Laboratory (1957).

    Google Scholar 

  23. F. H. Harlow, et al., LA-2301, Los Alamos National Laboratory (1959).

    Google Scholar 

  24. F. H. Harlow, Proc. Symp. in Appl. Math., Experimental, Arithmetic, High Speed Computing and Mathematics, vol. XV, pp. 269–288, 1963.

    Article  Google Scholar 

  25. F. H. Harlow, Meth. Comp. Phys. 3, 319 (1964).

    Google Scholar 

  26. A. A. Amsden, LA-3466, Los Alamos National Laboratory (1969).

    Google Scholar 

  27. J. U. Brackbill and H. M. Ruppel, J. Comp. Phys. 65, 314 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. U. Brackbill, D. B. Kothe, and H. M. Ruppel, Comp. Phys. Commun. 48, 25 (1988).

    Article  Google Scholar 

  29. D. B. Kothe, Ph.D. Thesis, Purdue University (1987).

    Google Scholar 

  30. K. S. Holian, Ed., LA-10160-MS, Los Alamos National Laboratory (1984).

    Google Scholar 

  31. C. W. Cranfill, Private Communication, Los Alamos National Laboratory, 1986–1987.

    Google Scholar 

  32. S. I. Braginskii, in Reviews of Plasma Physics, (Consultants Bureau, New York, 1965), Vol. 1, pp. 205–311.

    Google Scholar 

  33. H. Bethe, Ann. Physik. 5, 325 (1930).

    Article  MATH  Google Scholar 

  34. H. Bethe, Z Physik. 76, 293 (1932).

    Article  Google Scholar 

  35. J. Linhard, M. Scharff, and H. E. Schiott, Mat. Fys. Medd. Dan. Vid. Selsk. 33(14), 1 (1963).

    Google Scholar 

  36. J. Linhard and M. Scharff, Phys. Rev. 124, 128 (1964).

    Article  Google Scholar 

  37. T. A. Mehlhorn, J. Appl. Phys. 52, 6522 (1981).

    Article  Google Scholar 

  38. P. G. Steward and R. W. Wallace, UCRL-19128, Lawrence Livermore National Laboratory (1970).

    Google Scholar 

  39. J. D. Jackson, Classical Electrodynamics, (John Wiley and Sons, New York, 1975), 2nd Ed., ch 13.

    MATH  Google Scholar 

  40. C. K. Choi and M.-Y. Hsiao, Nucl. Tech./Fus. 3, 273 (1983).

    Google Scholar 

  41. M. D. Brown and C. D. Moak, Phys. Rev. B 6, 90 (1972).

    Article  Google Scholar 

  42. P. G. Steward, UCRL-18127, Lawrence Radiation Laboratory, Ph. D. Thesis, (1968).

    Google Scholar 

  43. L. C. Northcliffe, in Studies in Penetration of Charged Particles in Matter, (National Academy of Sciences, National Research Council, Pub. 1133, Washington, D. C, 1964), p. 173.

    Google Scholar 

  44. D. B. Kothe, C. K. Choi, and J. U. Brackbill, in Laser Interaction and Related Plasma Phenomena, (Plenum Press, New York, 1988), vol. 8, pp. 701–721.

    Google Scholar 

  45. J. J. Monaghan, Comp. Phys. Rep. 3, 71 (1985).

    Article  Google Scholar 

  46. R. L. Bjork, RAND-P-1662, Rand Corporation Report (1958).

    Google Scholar 

  47. T. D. Riney, R62SD95, General Electric Space Sciences Laboratory Report (1962).

    Google Scholar 

  48. T. D. Riney, R64SD13, General Electric Space Sciences Laboratory Report (1964).

    Google Scholar 

  49. F. H. Harlow and B. D. Meixner, LAMS-2770, Los Alamos National Laboratory (1962).

    Google Scholar 

  50. C. Mader, LA-3077, Los Alamos National Laboratory (1964).

    Google Scholar 

  51. W._R. Gage and C. L. Mader, LA-3422, Los Alamos National Laboratory (1965).

    Google Scholar 

  52. A. A. Amsden and F. H. Harlow, AIAA J. 3, 2081 (1965).

    Article  Google Scholar 

  53. F. H. Harlow, A. A. Amsden, and J. R. Nix, J. Comp. Phys. 20, 119 (1976).

    Article  Google Scholar 

  54. F. H. Harlow and W. E. Pracht, Phys. Fluids 9, 1951 (1966).

    Article  Google Scholar 

  55. F. H. Harlow and D. 0. Dickman, LA-2256, Los Alamos National Laboratory (1959).

    Google Scholar 

  56. J. N. Leboeuf, T. Tajima, and J. M. Dawson, J. Comp. Phys. 31, 379 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  57. A. Nishiguchi and T. Yabe, J. Comp. Phys. 52, 390 (1983).

    Article  MATH  Google Scholar 

  58. B. M. Marder, Math. Comp. 29, 434 (1975).

    MathSciNet  MATH  Google Scholar 

  59. J. W. Dawson, Rev. Mod. Phys. 55, 403 (1983).

    Article  Google Scholar 

  60. J. W. Eastwood, Comp. Phys. Commun. 43, 89 (1986).

    Article  Google Scholar 

  61. A. Nishiguchi and T. Yabe, J. Comp. Phys. 47, 297 (1982).

    Article  MATH  Google Scholar 

  62. J. U. Brackbill and J. S. Saltzman, J. Comp. Phys. 46, 342 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  63. J. U. Brackbill, Comp. Phys. Commun. 47, 1 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  64. J. J. Monaghan and R. A. Gingold, J. Comp. Phys. 52, 374 (1983).

    Article  MATH  Google Scholar 

  65. D. S. Kershaw, J. Comp. Phys. 26, 43 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  66. V. Casulli and D. Greenspan, Int. J. Num. Methods Fluids 4, 1001 (1984).

    Article  MATH  Google Scholar 

  67. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, (Interscience Publishers, New York, 1967), 2nd Ed., ch. 8.

    MATH  Google Scholar 

  68. J. J. Duderstadt and G. A. Moses, Inertial Confinement Fusion, (John Wiley and Sons, New York, 1982).

    Google Scholar 

  69. M. R. Clover, Private Communication, Los Alamos National Laboratory, 1986.

    Google Scholar 

  70. T. A. Mehlhorn, Private Communication, Sandia National Laboratory, 1987.

    Google Scholar 

  71. D. Kershaw, UCID-17424, Lawrence Livermore National Laboratory (1977).

    Google Scholar 

  72. F. H. Harlow and A. A. Amsden, LA-4700, Los Alamos National Laboratory (1971).

    Google Scholar 

  73. B. Badger, et al., KfK-3202, Kernforschung. Karlsruhe and UWFDM-450, Univ. of Wisc. (1981).

    Google Scholar 

  74. B. Badger, et al., Univ. of Wisc. Tech Inst. Report UWFDM-625, Kernforschungszentrum Karlsruhe Report KfK-3840, Fusion Power Associates Report FPA-84-4 (1984).

    Google Scholar 

  75. B. J. Daly, Phys. Fluids 10, 297 (1967).

    Article  MATH  Google Scholar 

  76. W. P. Crowley, UCRL-72650, Lawrence Livermore National Laboratory (1970).

    Google Scholar 

  77. D. L. Youngs, AWRE/44/92/23, Atomic Weapons Research Establishment (1981).

    Google Scholar 

  78. G. A. Sod, J. Comp. Phys. 27, 1 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  79. K.-H. A. Winkler, M. L. Norman, and D. Mihalas, in Multiple Time Scales, (Academic Press, New York, 1984), J. U. BrackbiU and B. I. Cohen, Editors, pp. 145–184.

    Google Scholar 

  80. K.-H. A. Winkler, D. Mihalas, and M. L. Norman, Comp. Phys. Commun. 36, 121 (1985).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kothe, D.B., Choi, C.K. (1991). An Implicit Fluid-Particle Model for Ion Beam-Plasma Interactions. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3804-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3804-2_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6696-6

  • Online ISBN: 978-1-4615-3804-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics