Tight Focusing of Proton Beam and Its Interaction with Targets

  • Weihua Jiang
  • Katsumi Masugata
  • Kiyoshi Yatsui


A high-bright, self-magnetically insulated, coaxial ion beam diode, “Plasma Focus Diode” (PFD), was successfully developed and studied systematically. Using such the tightly focused beam, we investigated the ion beam energy deposition in the intense beam-target interaction. Experimental results on various diagnostics are reported briefly involving diode operation, ion-current density, beam-power density and energy spectra. The beam-target interaction experiment is described in detail, where the proton energy loss was measured by a time-resolvable Thomson-parabola spectrometer (TPS). In comparison with the energy loss for cold target (calculated by Bethe equation), enhanced energy deposition was observed for aluminium targets of 7 μm thick with maximum enhancement ratio of ∼ 1.5. Theoretical efforts involve diode behaviour analysis and simulations of beam-target interaction. We analyzed diode behaviour through calculations of field distribution, electron and ion densities and diode impedance. In the simulation of beam-target interaction, we applied bound electron and free electron stopping power model, thermal equilibrium model, radiation and conduction model and hydrodynamic expansion model. The simulated results of proton energy loss in aluminium are in good agreement with the experimental data. Following above experimental and theoretical studies, physical understanding was obtained on PFD and the associated interaction with targets.


Bethe Equation Aluminium Target Cold Target Proton Energy Spectrum Beam Power Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    S. Humphries, Jr.: Nuclear Fusion, 20, 1549(1980).CrossRefGoogle Scholar
  2. 2).
    J. P. VanDevender, J. A. Swegle, D. J. Johnson, K. W. Bieg, E. J. T. Burns, J. W. Poukey, P. A. Miller, J. N. Olsen and G. Yonas: Laser and Particle Beams 3, 93 (1985).CrossRefGoogle Scholar
  3. 3).
    K. Masugata, T. Yoshikawa, A. Takahashi, K. Aga, Y. Araki, M. Ito and K. Yatsui: Proc. 6th Int’l Conf. High-Power Particle Beams, Kobe, 1986, ed. by C. Yamanaka (Inst. Laser Eng., Osaka Univ.), 152 (1986).Google Scholar
  4. 4).
    K. Masugata, K. Aga, A. Takahashi and K. Yatsui: Proc. of 2nd Int’l Top. Symp. ICF Res. by High-power Particle Beams, Nagaoka, 1986, ed. by K. Yatsui (Lab. Beam Tech., Tech. Univ. of Nagaoka), 81 (1986).Google Scholar
  5. 5).
    K. Yatsui, Y. Shimotori, Y. Araki, K. Masugata, S. Kawata and M. Murayama: Proc. 11th Int’l Conf. Plasma Phys. & Controlled Nucl. Fusion Res., Kyoto, IAEA-CN-47/B-I-9 (1986).Google Scholar
  6. 6).
    K. Yatsui, K. Masugata and S. Kawata: Proc. 8th Int’l Workshop on Laser Interaction and Related Plasma Phenomena, Monterey, USA (1987); also, Laser Interaction and Related Plasma Phenomena (Plenum Press, New York and London), 8, 653 (1988).Google Scholar
  7. 7).
    K. Yatsui, Y. Shomotori, H. Isobe, W. Jiang and K. Masugata: Proc. 12th Int’l Conf. Plasma Phys. & Controlled Nuclear Fusion Research, Nice, France, IAEA-CN-50/B-4-2 (1988).Google Scholar
  8. 8).
    K. Yatsui, K. Masugata, Y. Shimotori, K. Imanari, M. Murayama, M. Yokoyama and T. Takaai: Proc. 7th Int’l Conf. High-Power Particle Beams, Karlsruhe, West Germany, I, 522 (1988).Google Scholar
  9. 9).
    K. Masugata, H. Isobe, K. Aga, M. Matsumoto, S. Kawata, W. Jiang and K. Yatsui: Laser and Particle Beams 7, 287 (1989).CrossRefGoogle Scholar
  10. 10).
    F. C. Young, D. Mosher, S. J. Stephanakis, S. A. Goldstein and T. A. Mehlhorn: Phys. Rev. Lett. 49, 549 (1982).CrossRefGoogle Scholar
  11. 11).
    J. N. Olsen, T. A. Mehlhorn, J. Maenchen and D. J. Johnson: J. Appl. Phys. 58, 2958 (1985).CrossRefGoogle Scholar
  12. 12).
    H. Bluhm, B. Goel, P. Hoppe, H. U. Karow and D. Rusch: Proc. 7th Int’l Conf. High-Power Particle Beams, Karlsruhe, West Germany, I, 381 (1988).Google Scholar
  13. 13).
    T. A. Mehlhorn: J. Appl. Phys. 52, 6522 (1981).CrossRefGoogle Scholar
  14. 14).
    E. Nardi, E. Peleg and Z. Zinamon: Appl. Phys. Lett. 39, 46 (1981).CrossRefGoogle Scholar
  15. 15).
    K. A. Long and N. A. Tahir: Phys. Fluids, 29, 4204 (1986).CrossRefGoogle Scholar
  16. 16).
    K. Yatsui, Y. Araki, K. Masugata, M. Murayama, M. Ito, E. Sai, M. Ikeda, Y. Shimotori, A. Takahashi and T. Tanabe: in Ref. 3, 329Google Scholar
  17. 17).
    A. Tokuchi, N. Nakamura, T. Kunimatsu, N. Ninomiya, M. Den. Y. Araki, K. Masugata and K. Yatsui: in Ref. 4, 430 (1986).Google Scholar
  18. 18).
    P. A. Miller and C. W. Mendel, Jr., J. Appl. Phys. 61, 529 (1987).CrossRefGoogle Scholar
  19. 19).
    H. H. Andersen and J. F. Ziegler: Hydrogen-Stopping Powers and Ranges in All Elements (Pergamon Press, New York) (1977).Google Scholar
  20. 20).
    E. J. McGuire, J. M. Peek, and L. C. Pitchford: Phys. Rev., A26, 1318 (1982).CrossRefGoogle Scholar
  21. 21).
    J. D. Jackson: Classical Electrodynamics (John Wiley & Sons, New York), 643 (1975).MATHGoogle Scholar
  22. 22).
    L. Spitzer, Jr.: Physics of Fully Ionized Gases (John Wiley & Sons, New York), 128 (1960).Google Scholar
  23. 23).
    D. Pines and D. Bohm: Phys. Rev. 85, 338 (1952).MathSciNetCrossRefMATHGoogle Scholar
  24. 24).
    Ya. B. Zeldovich and Yu. P. Raizer: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967), I, Chap. II; II, Chap. X.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Weihua Jiang
    • 1
  • Katsumi Masugata
    • 1
  • Kiyoshi Yatsui
    • 1
  1. 1.Laboratory of Beam TechnologyNagaoka University of TechnologyNiigataJapan

Personalised recommendations