Advertisement

A Review of Back Lighted Thyratron Physics and Applications

  • Martin A. Gundersen

Abstract

This review discusses a new device, the back-lighted thyratron. The review includes discussion of physics studies of the BLT plasma and cathode, several new applications to the development of practical plasma based devices needed to test and develop concepts for plasma based accelerators, electromagnetic sources, and related devices such as plasma lenses, and the application as a high power switch.

Keywords

Plasma Density Glow Discharge High Repetition Rate Streak Camera High Plasma Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Kirkman and M. A. Gundersen, “A Light Initiated Glow Discharge Switch for High Power Applications,” Appl. Phys. Lett. 49(9) 494, (1986). For comprehensive reviews see “High power hollow electrode thyratron-type switches,” K. Frank, E. Boggasch, J. Christiansen, A. Goertler, W. Hartmann, C. Kozlik, G. Kirkman, C. G. Braun, V. Dominic, H. Riege and M.A. Gundersen, Proceedings, Sixth IEEE Pulsed Power Conference, June 1987, and “High power hollow electrode thyratron-type switches,” K. Frank, E. Boggasch, J. Christiansen, A. Goertler, W. Hartmann, C. Kozlik, G. Kirkman, C. G. Braun, V. Dominic, M.A. Gundersen, H. Riege and G. Mechtersheimer, IEEE Trans Plasma Science PS-16,317, (1988).CrossRefGoogle Scholar
  2. 2.
    H.J. Cirkel, “High power excimer laser”, Presented at Lasers’ 87, Lake Tahoe, CA, Dec. 1987.Google Scholar
  3. 3.
    E. Boggasch, V. Brueckner, and H. Riege, “A 400 kA pulse generator with pseudo-spark switches”, Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, pp. 820, 1985.Google Scholar
  4. 4.
    C.G. Braun, W. Hartmann, V. Dominic, G. Kirkman, M. Gundersen and G. McDuff, “Fiber optic triggered high-power low-pressure glow discharge switches,” IEEE Trans. Electron Devices, Vol. 35,(4), 559 (1988).CrossRefGoogle Scholar
  5. 5.
    W. Hartmann and M. A. Gundersen “Origin of Anomalous Emission in Superdense Glow Discharge”, Phys Rev Lett., 60, 2371 (1988).CrossRefGoogle Scholar
  6. 6.
    “Evidence for large area super-emission into a high current glow discharge,” W. Hartmann, V. Dominic, G.F. Kirkman, and M.A. Gundersen, App. Phys. Lett. 53(18), 1699 (1988).CrossRefGoogle Scholar
  7. 7.
    “A super-emissive self heated cathode for high power applications,” W. Hartmann, G. F. Kirkman, V. Dominic, and M.A. Gundersen, IEEE Trans. Elect. Dev. 36(4), 825 (1989).CrossRefGoogle Scholar
  8. 8.
    “An analysis of the anomalous high current cathode emission in pseudo-spark and BLT switches,” W. Hartmann, V. Dominic, G. Kirkman, and M. A. Gundersen, J. Appl. Phys. 65(11), 4388 (1989).CrossRefGoogle Scholar
  9. 9.
    See “Workshop on the Fundamentals and Applications of the Pseudospark Discharge”, Bad Honnef, West Germany, October 1987.Google Scholar
  10. 10.
    “High current plasma based electron source,” H. R. Bauer and M. A. Gundersen, submitted to Appl. Phys. Lett.Google Scholar
  11. 11.
    “A two component model for the electron distribution function in a high current pseudospark or back-lighted thyratron,” H. Bauer, G. Kirkman, and M. A. Gundersen, IEEE Trans. Plasma Sci. 18(2) (1990).Google Scholar
  12. 12.
    J.B. Rosenzweig, D.B. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny, J. Norem, P. Schoessow, and J. Simpson, Phys. Rev. Lett., 61, 98 (1988).CrossRefGoogle Scholar
  13. 13.
    T. Tajima and J. Dawson, Phys. Rev. Lett. 43, 267 (1979).CrossRefGoogle Scholar
  14. 14.
    P. Chen et. al., Phys. Rev. Lett. 54, 693 (1985).CrossRefGoogle Scholar
  15. 15.
    T. Katsouleas, J.J. Su, W.B. Mori, C. Joshi and J.M. Dawson, “A compact 100 MEV accelerator based on plasma wakefields”, presented at OE /LASE, Los Angeles, Jan. 1989.Google Scholar
  16. 16.
    See, for example A.D. Bandrauk, Ed., “Atomic and Molecular Processes with Short Intense Laser Pulses”, NATO ASI Series B: Physics, Plenu Press (1987). This provides a current review of multiphoton ionization problems, and several articles specifically address multiphoton ionization in hydrogen.Google Scholar
  17. 17.
    See, for example, S. Turner, Ed., “Proceedings of the workshop on new developments in particle acceleration techniques”, Orsay, Fr, 29 June–4 July 1987, available from CERN, Publication CERN 87-11, ECFA 87/110 (1987).Google Scholar
  18. 18.
    E.B. Forsyth, L.M. Lederman and J. Sunderland, “The Brookhaven-Columbia plasma lens”, IEEE Trans. Nucl. Sci. 12, 872 (1965). See also P. Chen, “A possible final focusing mechanism for linear collider”, Particle Accelerators 20, 171 (1982), P. Chen, J.J. Su, T. Katsouleas and J.M. Dawson, “Plasma focusing for high-energy beams”, IEEE Trans. Plasma Sci. PS-15 (2), 218 (1987).CrossRefGoogle Scholar
  19. 19.
    H. Figueroa, W. Gai, R. Konecny, J. Norem, A. Ruggiero, P. Schoessow, and J. Simpson, “Direct measurement of beam-induced fields in accelerating structures,” Phys. Rev. Lett. 60, 2144 (1988).CrossRefGoogle Scholar
  20. 20.
    H. Figueroa, G. Kirkman, and M.A. Gundersen, “A plasma lens candidate with highly stable properties,” Proceedings of the 1989 Workshop on Advanced Accelerator Concepts, Lake Arrowhead, California, Jan. 9–13, 1989, in press.Google Scholar
  21. 21.
    F. Muller, Reported at the “Workshop on the Fundamentals and Applications of the Pseudospark Discharge,” Bad Honnef, West Germany, October 1987.Google Scholar
  22. 22.
    H. Figueroa and C. Joshi, Laser Interaction and Related Plasma Phenomena, 7, 241, Plenum Press (1986).CrossRefGoogle Scholar
  23. 23.
    J. Christiansen and Ch. Shultheiss, “Production of High Current Particle Beams by Low Pressure Spark Discharge”, Z. Physik A 290, 35 (1979); W. Benker, J. Christiansen, K. Frank, H. Gundel, W. Hartmann, T. Redel, M. Stetter, “Pulsed Intense Electron Beams from Pseudospark Discharges”, SPEE OE/LASE Los Angeles, January, 1988; E. Boggasch, T. A. Fine and M. J. Rhee, “Measurement of Pseudospark Produced Electron Beam”, Bull. Amer. Phys. Soc, 33, 1951, (1988); G. Kirkman, M. Gundersen, reported at the 1988 IEEE Electron Devices Meeting, Dec. 1988.CrossRefGoogle Scholar
  24. 24.
    G. F. Kirkman, H. Figueroa and M. A. Gundersen, “A plasma lens with highly stable properties,” 1989 Workshop on Advanced Accelerator Concepts.Google Scholar
  25. 25.
    D.A. Erwin and M.A. Gundersen, “Measurement of excited-state densities during high-current operation of a hydrogen thyratron using laser-induced fluorescence,” Appl. Phys. Lett. 48, 1773 (1986). D.A. Erwin, J.A. Kunc, and M.A. Gundersen, “Determination of electric field and electron temperature in the positive column of a high-power thyratron from non-intrusive measurements,” Appl. Phys. Lett. 48, 1727 (1986).CrossRefGoogle Scholar
  26. 26.
    W. Hartmann V. Dominic, G. Kirkman, and M. A. Gundersen, “Evidence for Large Area Super-Emission into a Glow Discharge,” Appl. Phys. Lett. 53, 1699 (1988).CrossRefGoogle Scholar
  27. 27.
    C. G. Braun, D. A. Erwin and M.A. Gundersen, “Fundamental processes affecting recovery in hydrogen thyratrons,” Appl. Phys. Lett. 50(19), 1325 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Martin A. Gundersen
    • 1
  1. 1.Department of Electrical Engineering-ElectrophysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations