New Basic Theory from Laser-Plasma Double Layers: Generalization to Degenerate Electrons and Nuclei

  • H. Hora
  • S. Eliezer
  • R. S. Pease
  • A. Scharmann
  • D. Schwabe

Abstract

The study of laser-plasma interaction resulted in several extensions and new developments of plasma theory including the general formulation of the nonlinear force of laser-plasma interaction, the importance of collisions, quantum collisions and to the discovery of dynamic internal electric fields and double layers in inhomogeneous plasmas. The resulting surface tension in cavitons and at plasma boundaries (due to the faster emitted electrons) results in stabilization against Raleigh-Taylor instability. The same occurs with the degenerate electron gas within the ion lattice of a metal: the electrons try to leave the ion lattice with the Fermi energy until a double layer is being built up. The resulting surface tension immediately agrees with measured values from metals. This can be applied to explain the driving surface force of the Marangoni flow by the flow the electrons in the electron layer swimming at the metal surface. We further derive Hofstadter’s charge decay in nuclei from a Debye length and calculate the measured surface energy of nuclei.

Keywords

Titanium Microwave Palladium Bismuth Compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973).Google Scholar
  2. [2]
    S. Eliezer, A.K. Ghatak, H. Hora and E. Teller, Equations of State. (Cambridge University Press, Cambridge, 1986).Google Scholar
  3. [3]
    H. Hora, Laser Plasmas and Nuclear Energy (Plenum, New York, 1975).CrossRefGoogle Scholar
  4. [4]
    M. Lubiri, ECLIM 74th Conference, Garching, April 1974.Google Scholar
  5. [5]
    S. Jaeckel, B. Perry and M. Lubin, Phys. Rev. Lett. 37, 95 (1976).CrossRefGoogle Scholar
  6. [6]
    R. Dragila, R.A.M. Maddever, and B. Luther-Davies, Phys. Rev. A 36, 5292 (1987).CrossRefGoogle Scholar
  7. [7]
    A. Maddever, B. Luther-Davies, and R. Dragila, Phys. Rev. A (1990), A. Maddever, PhD Thesis Australian National University 1988.Google Scholar
  8. [8]
    J.H. Nuckolls, Physics Today 35, (No. 9) 24 (1982).CrossRefGoogle Scholar
  9. [9]
    Y. Kato, K. Mima et al, Phys. Rev. Lett. 53, 1057 (1984)CrossRefGoogle Scholar
  10. Obenschain et al, Phys. Rev. Lett. 56, 2807 (1986)CrossRefGoogle Scholar
  11. Deng Ximing and Yu Wenyan, Advances in Inertial Confinement Fusion Res. (IAEA, Kobe, Nov. 1983), C. Yamanaka ed. (ILE Osaka 1984) p. 66. (1982)Google Scholar
  12. Tan Weihan et al, Laser and Part. Beams 3, 237 (1985).CrossRefGoogle Scholar
  13. [10]
    Gu Min and H. Hora, Chinese Journal of Lasers 16, 656 (1989).Google Scholar
  14. [11]
    H. Hora, L. Cicchitelli, Gu Min, G.H. Miley, G. Kasotakis, and R.J. Stening, Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York 1990). Vol. 9, p.Google Scholar
  15. [12]
    H. Hora, Physics of Laser Driven Plasmas (Wiley, New York 1981).Google Scholar
  16. [13]
    S. Eliezer and H. Hora, Physics Reports 172 339 (1989); Fusion Technol. 16, 419 (1989)CrossRefGoogle Scholar
  17. H. Hora, P. Lalousis, and S. Eliezer, Phys. Rev. Lett. 53, 1650 (1984).CrossRefGoogle Scholar
  18. [14]
    R.M. Kulsrud, Physics Today, 34 (No. 4) 56 (1983) 3rd col, 7th line.Google Scholar
  19. [15]
    H. Alfven, Cosmic Plasmas (Reidel, Dordrecht, 1981).CrossRefGoogle Scholar
  20. [16]
    H. Hora, S. Eliezer, M.P. Goldsworthy, R.J. Stening, and H. Szichman, Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York, 1988) Vol. 8, p.293.Google Scholar
  21. [17]
    A. Schlüter, Z. Naturforsch, 5A, 72 (1950).Google Scholar
  22. [18]
    H. Hora, Phys. Fluids 12, 182 (1969).CrossRefGoogle Scholar
  23. [19]
    L. Spitzer, Physics of Fully Ionized Plasmas (Wiley, New York, 1959).Google Scholar
  24. [20]
    A. Zeidler, H. Schnabe, and P. Mulser, Phys. Fluids 28, 372 (1985).CrossRefMATHGoogle Scholar
  25. [21]
    H. Hora, Phys. Fluids 28, 3705 (1985).CrossRefMATHGoogle Scholar
  26. [22]
    T. Rowlands, Plasma Physics (1990).Google Scholar
  27. [23]
    R. Lüst, Z. Astrophhys. 37, 67 (1955).MATHGoogle Scholar
  28. [24]
    H. Hora, Inst. Plasmaphysik, Garching Reports 6-23 and 6-27 (1964)Google Scholar
  29. H. Hora, and H. Wilhelm, Nuclear Fusion 10, 111 (1970).CrossRefGoogle Scholar
  30. [25]
    R.B. White and F.F. Chen, Plasma Physics, 16, 567 (1974).CrossRefGoogle Scholar
  31. [26]
    H. Hora, and A.K. Ghatak, Phys. Rev. A31, 3473 (1985)CrossRefGoogle Scholar
  32. M.P. Goldsworthy, F. Green, P. Lalousis, R.J. Stening, S. Eliezer and H. Hora, IEEE Trans. Plasma Sc. PS-14, 823 (1986).CrossRefGoogle Scholar
  33. [27]
    R. Fedosejevs et al, Phys. Rev. Lett. 39, 932 (1977)CrossRefGoogle Scholar
  34. H. Azechi et al, Phys. Rev. Lett. 932 (1977)Google Scholar
  35. P. Wagli, and T.P. Donaldson, Phys. Rev. Lett. 40, 875 (1978)CrossRefGoogle Scholar
  36. F.J. Mayer et al, Phys. Rev. Lett. 40, 30 (1978)CrossRefGoogle Scholar
  37. B. Luther-Davies and J.L. Hughes, Opt. Comm. 18, 605 (1976)CrossRefGoogle Scholar
  38. A. Montes, and O. Willi, Plasma Phys. 24, 67 (1982).CrossRefGoogle Scholar
  39. [28]
    T.P. Hughes and M.B. Nicholson-Florence, J. Phys. A1, 588 (1968).Google Scholar
  40. [29]
    H. Hora, Opt. Comm. 41, 268 (1982).CrossRefGoogle Scholar
  41. [30]
    Heidi Fearn, and M.O. Scully, Laser Interaction and Related Plasma Phenomena. H. Hora and G.H. Miley eds., (Plenum, New York 1990) Vol. 9, p.Google Scholar
  42. [31]
    H.A. Bethe, Handbuch der Physik, H. Geiger, and L. Scheel eds., (Springer, Berlin 1933) Vol. 24, p.497.Google Scholar
  43. [32]
    R.E. Marshak, Ann. N.Y. Acad. Sci. 41, 49 (1941).CrossRefGoogle Scholar
  44. [33]
    H. Hora, Nuovo Cimento, 64B, 1 (1981)CrossRefGoogle Scholar
  45. [34]
    G. Grieger and Wendelstein VII — Team, Plasma Physics and Controlled Nuclear Fusion Research 1980 (IAEA Vienna 1981) Vol. I, p.173 and p. 185.Google Scholar
  46. [35]
    J. Hugill, Nuclear Fusion 23, 331 (1983), Analyzing results given there by Dimock et al, Fig. 5.CrossRefGoogle Scholar
  47. [36]
    K.A. Razumova Plasma Physics 26, 37 (1984).Google Scholar
  48. [37]
    G. Knorr and Ch. Goerz, Astrophys. Space Sci. 31, 209 (1974).CrossRefGoogle Scholar
  49. [38]
    N. Hershkowitz, Space Science Rev. 41, 351 (1985)CrossRefGoogle Scholar
  50. R. Schrittwieser, and G. Eder eds. Double Layers (Inst.) Theor. Phys. Innsbruck 1984).Google Scholar
  51. [39]
    T. Sato and H. Okuda, Phys. Rev. Lett. 44, 740 (1980)CrossRefGoogle Scholar
  52. T.K. Yabe, K. Mima, K. Yoshikawa, H. Takabe, and M. Hawano, Nucl. Fusion 21, 803 (1981).CrossRefGoogle Scholar
  53. [40]
    A.C. Williams, ed., Laser and Particle Beams 5, No. 2 (1987).Google Scholar
  54. [41]
    A.L. Peratt, Laser and Particle Beams, 6, 474 (1988), IEEE Trans. Plasma Sc. PS-17, 65 (1989).Google Scholar
  55. [42]
    S.I. Anisimov, and Yu. V. Medvedev, Sov. Phys. JETP 49, 62 (1979).Google Scholar
  56. [43]
    H. Hora, Z. Phys. 226 (1969).Google Scholar
  57. [44]
    V.V. Krobkin, and A.J. Alcock, Phys. Rev. Lett. 21, 1433 (1968)CrossRefGoogle Scholar
  58. M.C. Richardson and A.J. Alcock, Appl. Phys. Lett. 18, 357 (1971).CrossRefGoogle Scholar
  59. [45]
    F.E. Irons, R.W. McWhirter, and N.J. Peacock, J. Phys. B5, 1975 (1972).Google Scholar
  60. [46]
    H. Hora, Laser Interaction and Related Plasma Phenomena, H. Schwarz et al eds. (Plenum, New York 1971), Vol. 1, p.387.Google Scholar
  61. [47]
    P. Lalousis, PhD Thesis, Univ. New South Wales 1983).Google Scholar
  62. [48]
    P. Lalousis and H. Hora, Laser and Particle Beams, 11, (1983)Google Scholar
  63. H. Hora, P. Lalousis and S. Eliezer, Phys. Rev. Lett. 53, 1650 (1984).CrossRefGoogle Scholar
  64. [49]
    J.W. Shearer, R.E. Kidder and J.W. Zin, Bull. Amer. Phys. Soc. 15, 1483 (1970).Google Scholar
  65. [50]
    S. Eliezer and A. Ludmirski, Laser and Particle Beams 1, 251 (1983).CrossRefGoogle Scholar
  66. [51]
    R. Dragila, Laser and Particle Beams 3, 79 (1985).CrossRefGoogle Scholar
  67. [52]
    M. Goldsworthy, H. Hora and R.J. Stening, Plasma Physics and Controlled Nuclear Fusion Research 1988 (IAEA Vienna 1989) Vol. III, p.181.Google Scholar
  68. [53]
    Aleksandrova, Brunner et al, Laser and Particle Beams 3, 197, (1985)CrossRefGoogle Scholar
  69. Tan Weihan, Lin Zunqi, Gu Min et al, Phys. Fl. 30, 1510 (1987).CrossRefGoogle Scholar
  70. [54]
    N.G. Land, and W.I. Kohn, Phys. Rev. Bl, 4555 (1970).Google Scholar
  71. [55]
    H. Alfven, Laser and Particle Beams 6, 389 (1988), A.L. Peratt ed, Laser and Particle Beams 6 No. 3(1988).CrossRefGoogle Scholar
  72. [56]
    H. Szichman, Phys. Fluids, 31, 17002 (1988).CrossRefGoogle Scholar
  73. [57]
    G. Gouy, J. Chim. Phys., 29, 145 (1903).MATHGoogle Scholar
  74. [58]
    D.L. Chapman, Phil. Mag., 25, 475 (1913).CrossRefMATHGoogle Scholar
  75. [59]
    M.P. Tosi, Liquid Surfaces and Solid-Liquid Interfaces in Amorphous Solids and the Liquid State, E. March et al., Eds. (Plenum, New York, 1985) p. 125.CrossRefGoogle Scholar
  76. [60]
    L. Tonks and I. Langmuir, Phys. Rev., 33, 195 (1929).CrossRefMATHGoogle Scholar
  77. [61]
    S. Lundquist, “Electrical response of surfaces,” Surface Sci., vol. 6, p,.331, 1974.Google Scholar
  78. [62]
    G. Rickayzen, Liquid Surfaces and Solid-Liquid Interfaces in Amorphous Solids and the Liquid State, E. March et al., Eds. New York: Plenum, 1985, p.523.Google Scholar
  79. [63]
    Z. Henis, S. Eliezer and A. Zigler, J. Phys. G15, L219 (1989).CrossRefGoogle Scholar
  80. [64]
    H. Hora, L. Cicchitelli, G.H. Miley, M. Ragheb, A. Scharmann and W. Scheid, Nuovo Cimento 12D, 393 (1990).CrossRefGoogle Scholar
  81. [65]
    G. Tsotridi, H. Rother, and E.D. Hondros, Naturwissenschenften, 76, 216 (1989)CrossRefGoogle Scholar
  82. D. Schwabe, Phys. Chem., Hydrodyn. 2, 263 (1981).Google Scholar
  83. [66]
    H.G. Ahlstrom, Physics of laser fusion”, Lawrence Livermore Nat. Lab., Livermore, CA, Tech. Rep., 1982, Montes and Willi, see Ref. [27].Google Scholar
  84. [67]
    G.I. Taylor, “Disintegration of water drops in an electric field”, Proc. Roy. Soc, Ser. A, vol. A280, p.383, 1964.CrossRefGoogle Scholar
  85. [68]
    H. Takabe, K. Mima, L. Montierth, and R.L. Morse, Phys. Fluids, 28, 3676 (1985).MathSciNetCrossRefMATHGoogle Scholar
  86. [69]
    H. Hora, Gu Min, S. Eliezer, P. Lalousis, R.S. Pease, and H. Szichman, IEEE Trans. Plasma Sci. PS-17, (1989).Google Scholar
  87. [70]
    H. Hora, Naturwissenschaften 76, 214 (1989).CrossRefGoogle Scholar
  88. [71]
    R. Hofstadter: Australian Phys. 24, 236 (1987).Google Scholar
  89. [72]
    S.A. Moszkovski in: Handbuch der Physik, Vol. 34, p.432. (S. Flügge, ed.). Berlin: Springer 1957.Google Scholar
  90. [73]
    S. Ono, S. Kondo, in: Handbuch der Physik, Vol. X, p.134. (S. Flügge, ed.). Berlin: Springer 1960.Google Scholar
  91. [74]
    R. Stock, CERN Courier (Dez. 1987)Google Scholar
  92. J. Rafelski, Phys. Lett. B207, 371 (1988).CrossRefGoogle Scholar
  93. [75]
    C.W. Mendel, J.N. Olsen: Phys. Rev. Lett. 34, 859 (1975); see also Ref. [50].CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. Hora
    • 1
    • 2
  • S. Eliezer
    • 1
    • 3
  • R. S. Pease
    • 1
    • 4
  • A. Scharmann
    • 2
  • D. Schwabe
    • 2
  1. 1.Department of Theoretical PhysicsUniv. NSWSydneyAustralia
  2. 2.1st Institute of PhysicsJustus-Liebig-UniversityGiessenGermany
  3. 3.SOREQ NRCYavneIsrael
  4. 4.Culham LaboratoriesAbingdon, OxonEngland

Personalised recommendations