Symmetry and Functional Integration

  • C.-M. Viallet
Part of the NATO ASI Series book series (NSSB, volume 238)


The purpose of these lectures is to present the salient features of systems with symmetries, in view of their quantization. Among the different types of symmetries, an important class arises in the study of singular lagrangians (or equivalently constrained hamiltonians), of which the paradigm is the Yang-mills gauge lagrangian. We shall take this example as an illustration, although one should keep in mind that the features we will describe always appear, mutatis mutandis, for finite dimensional systems as well as for other field theories (e.g. gravitation or string theory).


Gauge Theory Gauge Transformation Orbit Space Gauge Potential Vertical Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. N Yang, R. L. Mills. “Conservation of isotopic spin and isotopic gauge invariance”. Phys. Rev. 96 (1954), p. 191.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. N. Yang. in “Chern Symposium”. June 1979. Berkeley.Google Scholar
  3. [3]
    E. Lubkin. “Geometric definition of gauge invariance”. Ann. Phys. (NY) 23 (1963), p. 233.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    R. Kerner. “Generalization of the Kaluza.-Klein theory for an arbitrary non abelian gauge group”.JAnn. Inst. H. Poincaré A9 (1968), p. 143.MathSciNetGoogle Scholar
  5. [5]
    A Trautman. “Fibre bundles associated with space-time”. Rep. Math. Phys. 1 (1970), p. 29.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    T. T. Wu, C. N. Yang. “Concept of non integrable phase factors and global formulation of gauge fields”. Phys. Rev. D12 (1975), p. 3845.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Y. M. Cho. “Higher dimensional unifications of gravitation and gauge theories”. J.M.P. 16 (1975), p. 2029.Google Scholar
  8. [8]
    W. Dreschsler, M.E. Mayer. “Fiber Bundle Techniques in Gauge Theories”. Lect. Notes in Physics 67. Springer (1977).Google Scholar
  9. [9]
    S.J. Avis, C. Isham. Cargèse Lectures 1977.Google Scholar
  10. [10]
    M.F. Atiyah. “Geometry of Yang-Mills fields”. Acc. Naz. dei Lincei. Pisa (1979).Google Scholar
  11. [11]
    M. Daniel, C.M. Viallet. “The geometrical setting of gauge theories of the Yang-Mills type”. Rev. Mod. Phys. 52 (1980), p. 175.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Eguchi, P.B. Gilkey, A.J. Hanson. “ Gravitation, gauge theory, and differential geometry”. Phys. Reports 66 (1980), p. 213.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Y. Choquet-Bruhat, C. de Witt-Morette, M. Dillard-Bleick. “Analysis, Manifolds and Physics”, 2nd. ed. (1982).Google Scholar
  14. [14]
    J. Madore. “Geometric methods in classical field theory”. Phys. Rep. 75 (1981), p. 125.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Trautman. “Differential geometry for physicists”. (1984) Bibliopolis.Google Scholar
  16. [16]
    N. Steenrod. “The topology of fibre bundles”. Princeton Math. Series 14 (P.U.P. 1951 ).Google Scholar
  17. [17]
    A. Lichnerowicz. “Théorie globale des connexions et des groupes d’holonomie”. Ed. Cremonese. Roma (1955).Google Scholar
  18. [18]
    S. Kobayashi, N. Nomizu. “Foundations of differential geometry”. Voll(1963), Vo12(1969). Wiley.Google Scholar
  19. [19]
    R. Utiyama.. “Invariant theoretical interpretation of interaction”. Phys. Rev. 101 (1956), p. 1597.MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    M. F. Atiyah, N. Hitchin, I. M. Singer. “Self duality in four dimensional riemannian geometry” Proc. R. Soc. A362 (1978), p. 425.MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    M. Daniel, C. M. Viallet. “The gauge fixing problem around classical solutions of the Yang-Mills theory”. Phys. Lett. 76B (1978), p. 458.MathSciNetCrossRefGoogle Scholar
  22. [22]
    V. Moncrief. “Gribov degeneracies: Coulomb gauge conditions and initial value constraint”. Journ. Math. Phys. 20 (1979), p. 579.MathSciNetADSMATHCrossRefGoogle Scholar
  23. [23]
    M. S. Narasimhan, T. R. Ramadas. “The geometry of SU(2) gauge fields”. Comm. Math. Phys. 67 (1979), p. 21.MathSciNetCrossRefGoogle Scholar
  24. [24]
    I. M. Singer. “Some remarks on the Gribov ambiguity”. Comm. Math. Phys. 60 (1978), p. 7.MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    P. K. Mitter, C.M. Viallet. “On the bundle of connections and the gauge orbit manifold in Yang-Mills theory”. Comm. Math. Phys. 79 (1981), p 43.MathSciNetCrossRefGoogle Scholar
  26. [26]
    W. Kondracki.. J. S. Rogulski. “On the stratification of the orbit space for the action of automorphisms of connections”.Preprint P. A. N. 1983.Google Scholar
  27. [27]
    W. Kondracki. P. Sadowski. “Geometric structure of the orbit space of gauge connections”. Inst. Math. Polish Ac. of Sciences (1984).Google Scholar
  28. [28]
    D. Ebin. “The manifold of riemannian metrics”. Proc. AMS Symp. Pure Math. XV (1968), p. 11.Google Scholar
  29. [29]
    J. P. Bourguignon. “Une stratification de l’espace des structures riemanniennes”. Comp. Math. 30 (1975), p. 1.MathSciNetMATHGoogle Scholar
  30. [30]
    P. A. M. Dirac. “Lectures on quantum mechanics” (1964) Belfer Series.Google Scholar
  31. [31]
    L. D. Faddeev. “The Feynman integral for singular lagrangians”. Theor. Math. Phys. 1 (1969), p. 3.MathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Hanson, T. Regge, C. Teitelboim. “Constrained hamiltonian systems”. Acc. Naz. dei Lincei. (1969).Google Scholar
  33. [33]
    E. S. Fra.dkin, G. S. Vilkovisky. “Quantization of relativistic systems with constraints. Equivalence of canonical and covariant formalims in quantum theory of gravitational field”. CERN Preprint TH 2332 (1977) (unpublished).Google Scholar
  34. [34]
    K. Sundermeyer. “Constrained dynamics”. Lect. Notes in Phys. Springer (1982).Google Scholar
  35. [35]
    M. Henneaux. “Hamiltonia.n form of the path integral for theories with a gauge freedom” Physics Reports 126 1985.Google Scholar
  36. [36]
    O. Babelon, C.M. Viallet. “The riemannian geometry of the configuration space of gauge theories”. Comm. Math. Phys. 81 (1981), p. 515.MathSciNetADSMATHCrossRefGoogle Scholar
  37. [37]
    L. D. Faddeev, V.N. Popov. “Feynman diagrams for the Yang-Mills field”. Phys. Lett. 25B (1967), p. 29.Google Scholar
  38. [38]
    R. P. Feynman. `Quantum theory of gravitation“. Acta Phys. Pol. 24 (1963), p. 697.MathSciNetGoogle Scholar
  39. [39]
    B. S. de Witt in “Relativity, groups and topology” (1964) Blackie and son.Google Scholar
  40. [40]
    O. Babelon, C.M. Viallet. “The geometrical interpretation of the Faddev-Popov determinant”. Phys. Lett. 85B (1979), p. 246.MathSciNetCrossRefGoogle Scholar
  41. [41]
    A. S. Schwartz. “Instantons and fermions in the field of instantons”. Comm. Math. Phys. 64 (1979), p. 233.MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    B. S. de Witt. S. de Witt. “Quantum theory of gravity I. The canonical theory”. Phys. Rev. 160 (1967), p. 1113.ADSCrossRefGoogle Scholar
  43. [43]
    B. S. de Witt. S. de Witt. “Quantum theory of gravity II. The manifestly covariant theory”. Phys. Rev. 162 (1967), p. 1195.ADSCrossRefGoogle Scholar
  44. [44]
    B. S. de Witt. S. de Witt. “Quantum theory of gravity III. Applications of the covariant theory”. Phys. Rev. 162 (1967), p. 1239.ADSCrossRefGoogle Scholar
  45. [45]
    P. Ellicot, G. Kunstatter, D. J. Toms. “Geometrical derivation of the FaddeevPopov Ansatz” To appear in International Journal of Modern Physics.Google Scholar
  46. [46]
    R. Catenacci, M. Martellini. “On a geometrical interpretation of the FaddeevPopov determinant for pure quantum gravity”. Phys. Lett. 138B (1984), p. 263.MathSciNetCrossRefGoogle Scholar
  47. [47]
    A. Polyakov. “Quantum geometry of bosonic strings”.Phys. Lett. 103B (1981), p. 207.MathSciNetCrossRefGoogle Scholar
  48. [48]
    A. Polyakov. “Quantum geometry of fermionic strings”. Phys. Lett. (1981), p. 211.Google Scholar
  49. [49]
    D. Groisser, T. H. Parker. “The riemannian geometry of the Yang-Mills moduli space”. Comm Math. Phys. 112 (1987), p. 663.MathSciNetADSMATHCrossRefGoogle Scholar
  50. [50]
    R. Bott in “Representation theory of Lie groups”. London Math. Soc. Lect. Notes 34 Cambridge Univ. Press (1979).Google Scholar
  51. [51]
    V. N. Gribov. “Quantization of non abelian gauge theories”. Nucl. Phys. B139 (1978), P. 1.MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    T. P. Killingback. “The Gribov ambiguity in gauge theories on the four-torus”. Phys. Lett. 138B (1984), p. 87.MathSciNetCrossRefGoogle Scholar
  53. [53]
    D. Zwanziger. “Non perturbative modification of the Faddeev-Popov formula and banishment of the naive vacuum”. Nucl. Phys. B209 (1982),p. 336.MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    M. A. Semenov-Tian-Shansky, V. A. Franke. “A variational principle for the Lorentz condition and restriction of the domain of path integration in non abelian gauge theory” Zapiski Nauch. Sem. Leningrad (1982), english transi. Jour. Sov. Math. (1986), p. 1999.Google Scholar
  55. [55]
    G. Jona-Lasinio, C. Parinello. “On the stochastic quantization of gauge theories” Phys. Lett. B213 (1988), p. 466MathSciNetCrossRefGoogle Scholar
  56. [56]
    P. Nelson, L. Alvarez-Gaumé. “Hamiltonian interpretation of anomalies”. Comm. Math. Phys. 99 (1985), p. 103.MathSciNetADSMATHCrossRefGoogle Scholar
  57. [57]
    C. Becchi, A. Rouet, R. Stora.“Renormalization of gauge theories”. Ann. Phys. 98 (1976), p. 287.MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    C. Becchi, A. Rouet, R. Stora. “Renormalization of the abelian Higgs-Kibble model”. Comm. Math. Phys. 42 (1975), 127.MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    L. Bonora, P. Cotta-Ramusino. “Some remarks on BRS transformations, anomalies, and the cohomology of the Lie algebra of the group of gauge transformations”. Comm. Math. Phys. 87 (1983), p. 589.MathSciNetADSMATHCrossRefGoogle Scholar
  60. [60]
    S. Adler, W. Bardeen. “Absence of higher order corrections in the anomalous axial-vector divergence equation”. Phys. Rev. 182 (1969), p. 1517.ADSCrossRefGoogle Scholar
  61. [61]
    W. Bardeen. “Anomalous Ward identities in spinor field theory”. Phys. Rev. 184 (1969), p. 1848.ADSCrossRefGoogle Scholar
  62. [62]
    R. Jackiw, K. Johnson. “Anomalies of the axial-vector current”. Phys. Rev. 182 (1969), p. 1459.ADSCrossRefGoogle Scholar
  63. [63]
    S. Adler. “Perturbation theory anomalies”. Brandeis Summer School 1970. Deser, Grisaru, Pendleton eds. M.I.T. Press.Google Scholar
  64. [64]
    R. Stora. Erice Lectures 1975 and Cargèse Lectures 1976.Google Scholar
  65. [65]
    B. Zumino. Les Houches Lectures 1983.Google Scholar
  66. [66]
    R. Stora. Cargèse Lectures 1983 and Gift Lectures 1985.Google Scholar
  67. [67]
    C. Becchi. Les Houches Lectures 1983.Google Scholar
  68. [68]
    J. Wess, B. Zumino. “Consequences of anomalous Ward identities”. Phys. Lett. 37B (1971), p. 95.MathSciNetGoogle Scholar
  69. [69]
    M. F. Atiyah, R. Bott. “The Yang-Mills equations over Riemann surfaces”. Phil. Trans. R. Soc. A308 (1982), p. 523.MathSciNetADSGoogle Scholar
  70. [70]
    M. Asorey, P. K. Mitter. “On geometry, topology and q sectors in a regularized quantum Yang-Mills theory”. Preprint CERN TH3424 (1982).Google Scholar
  71. [71]
    L. Alvarez-Gaumé, P. Ginsparg. “The topological meaning of non-abelian anomalies”. Nucl. phys. B243 (1984), p. 449.ADSCrossRefGoogle Scholar
  72. [72]
    M. F. Atiyah, I. M. Singer. “Dirac operators coulped to vector potentials”. Proc. Nat. Ac. Sc. U.S.A. 81 (1984), p. 2597.MathSciNetADSMATHCrossRefGoogle Scholar
  73. [73]
    I. M. Singer. “Families of Dirac operators with applications to physics”. Conference en l’Honneur d’E. Cartan. Astérisque(1984).Google Scholar
  74. [74]
    O. Alvarez, I. M. Singer, B. Zumino. “Gravitational anomalies and the family’s index theorem”. Comm. Math. Phys. 96 (1984), p. 409.MathSciNetADSMATHCrossRefGoogle Scholar
  75. [75]
    J. A. Dixon. “Cohomology and renormalisation of gauge theories” (1976), unpublished.Google Scholar
  76. [76]
    J. Thierry-Mieg. “Classification of the Yang-Mills anomalies in even and odd dimension”. Phys. Lett. 147B (1984), p. 430.MathSciNetCrossRefGoogle Scholar
  77. [77]
    M. Dubois-Violette, M. Talon, C.M. Viallet. “Results on BRS cohomologies in gauge theory”. Phys. Lett. 158B (1985), p. 231.MathSciNetCrossRefGoogle Scholar
  78. [78]
    M. Dubois-Violette, M. Talon, C.M. Viallet. `BRS algebras. Analysis of the consistency equations in gauge theory“. Comm. Math. Phys. 102 (1985), p. 105.MathSciNetADSMATHCrossRefGoogle Scholar
  79. [79]
    M. Dubois-Violette, M. Talon, C.M. Viallet. “Anomalous terms in gauge theory: relevance of the structure group”. Ann. Inst. Henri Poincaré 44 (1986), p. 103.MathSciNetMATHGoogle Scholar
  80. [80]
    L. D. Faddeev. “Operator anomaly for the Gauss law”. Phys. Lett. 145B (1984), p. 81.MathSciNetCrossRefGoogle Scholar
  81. [81]
    R. Jackiw. “Chern-Simons terms and cocycles in physics and mathematics”. to appear in E. S. Fradkin Festschrift. Adam Hilger. Bristol (1986).Google Scholar
  82. [82]
    D. Bao. V. P. Nair. “A note on the covariant anomaly as an equivariant momentum mapping”. Comm. Math. Phys. 101 (1985), p. 437.MathSciNetADSMATHCrossRefGoogle Scholar
  83. [83]
    S. Deser, R. Jackiw, S. Templeton. “Topologically massive gauge theories”. Aim. Phys. 140 (1982), p. 372.MathSciNetADSGoogle Scholar
  84. [84]
    M. Asorey, P. K. Mitter. “Cohomology of the Yang-Mills gauge orbit space and dimensional reduction”.Phys. Lett. 153B (1985), p. 147.MathSciNetCrossRefGoogle Scholar
  85. [85]
    M. Asorey. P. K. Mitter. “Regularized continuum Yang-Mills process and Feynman-Kac functional integral”. Comm. Math. Phys. 80 (1981), p. 43.MathSciNetADSMATHCrossRefGoogle Scholar
  86. [86]
    C. Bouchiat, J. Iliopoulos, Ph. Meyer. “An anomaly version of Weinberg’s model” Phys. Lett. 38B (1972), p. 519.Google Scholar
  87. [87]
    D. Gross, R. Jackiw. “Effects of anomalies on quasi-renormalizable theories”. Phys. Rev. D6 (1972), p. 477.Google Scholar
  88. [88]
    R. Jackiw, R. Rajaraman. “Vector-Meson mass generation by chiral anomalies” Phys. Rev. Lett. 54 (1985), p. 1219ADSMATHCrossRefGoogle Scholar
  89. [89]
    L. D. Faddeev, S. L. Shatashvili. “Realization of the Schwinger term in the Gauss law and the possibility of correct quantization of a theory with anomalies”. Phys. Lett. 167B (1986), p. 225.CrossRefGoogle Scholar
  90. [90]
    O. Babelon, F. A. Schaposnik, C.-M. Viallet. “Quantization of gauge theories with Weyl fermions”. Phys. Lett. B177 (1986), p. 385.MathSciNetCrossRefGoogle Scholar
  91. [91]
    K. Harada, I. Tsutsui. “On the path integral quantization of anomalous gauge theories”. Phys. Lett. B183 (1987), p. 311.CrossRefGoogle Scholar
  92. [92]
    A. V. Kulikov. “Dynamic conservation of anomalous current in gauge theories” Serpukhov preprint ihep 86–33 (1986).Google Scholar
  93. [93]
    O. Piguet, A. Rouet. Physics Reports 76G (1981).Google Scholar
  94. [94]
    K. Fujikawa. “Path integral measure for gauge invariant fermions theories” Phys. Rev. Lett. 42 (1979), p. 1195.ADSCrossRefGoogle Scholar
  95. [95]
    K. Fujikawa. “Path integral for gauge theories with fermions”. Phys. Rev. D21 (1980), p. 2848MathSciNetADSGoogle Scholar
  96. [96]
    R. Rajaraman. “Hamiltonian formulation of the anomalous chiral Schwinger model”. Phys. Lett. B154. (1985), p. 305.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C.-M. Viallet
    • 1
  1. 1.Laboratoire de Physique Théorique L.P.T.H.E.Université Paris 6 / Tour 16 1er étageParis Cedex 05France

Personalised recommendations