Many Body Techniques for Waves Propagating in Random Media

  • B. Shapiro

Abstract

A wave propagating in disordered medium undergoes multiple scattering from inhomogeneities (the wave can be acoustic, electromagnetic, or it can represent an electron wave function). The scattered waves interfere with each other and, as a result, a certain intensity pattern (a speckle pattern) is formed within the sample. This speckle pattern is highly irregular, with large intensity variations over short distances. The irregularities are not due to noise but rather reflect the specific arrangement of the inhomogeneities (impurities) in a particular sample. This is true as long as there is no inelastic scattering within the sample, i.e. the wave propagates coherently through the entire sample (mesoscopic regime).

Keywords

Refraction Alphen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A. Lee and A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985); B.L. Altshuler, Pisma Zh. Eksp. Teor. Fiz. 41, 530 (1985) [JETP Lett. 41, 648 (1985)]; B.L. Altshuler and D.E. Khmelnitskii, Pisma Zh. Eksp. Teor. Fiz. 42, 291 (1985) [JETP Lett. 42, 359 (1985)]; Y. Imry, Europhys. Lett. 1, 249 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Licini, D.J. Bishop, M.A. Kastner and J. Melngailis, Phys. Rev. Lett. 55, 2987 (1985); W.J. Scocpol, P.M. Mankiewich, R.E. Howard, L.D. Jackel, D.M. Tennant and A.D. Stone, Phys. Rev. Lett. 56, 2865 (1986); T.J. Thornton, M. Pepper and H. Ahmed, Phys. Rev. B36, 4514 (1987); S. Washburn and R. Webb, Adv. Phys. 35, 375 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    M.J. Stephen and G. Cwilich, Phys. Rev. Lett. 59, 285 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    S. Feng, C. Kane, P.A. Lee and A.D. Stone, Phys. Rev. Lett. 61, 834 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    P.A. Mello, E. Akkermans and B. Shapiro, Phys. Rev. Lett. 61, 459 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    A. Yu. Zyuzin and B.Z. Spivak, Zh. Eksp. Teor. Fiz. 93, 994 (1987) [Sov. Phys. — JETP 66, 560 (1987)].Google Scholar
  7. 7.
    R. Pnini and B. Shapiro, Phys. Rev. B39, 6986 (1989).ADSGoogle Scholar
  8. 8.
    I. Edrei, M. Kaveh and B. Shapiro, Phys. Rev. Lett. 62, 2120 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    I. Freund, M. Rosenbluh and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    R. Berkovitz and M. Kaveh, unpublished.Google Scholar
  11. 11.
    U. Frish, in Probabilistic Methods in Applied Mathematics, edited by A.T. Bharucha-Reid (Academic, New York, 1968), Vol. 1, p. 75.Google Scholar
  12. 12.
    A.A. Abrikosov, L.P. Gorkov and I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, 1963). Sec. 39.Google Scholar
  13. 13.
    A vector (electromagnetic) field was considered, e.g., in M.J. Stephen and G. Cwilich, Phys. Rev. B34, 7564 (1986); K. Arya, Z.B. Su and J.L. Birman, unpublished.Google Scholar
  14. 14.
    B. Shapiro, Phys. Rev. Lett. 57, 2168 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    See, e.g., A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).Google Scholar
  16. 16.
    O.D. Cheishvili, Pisma Zh. Eksp. Teor. Fiz. 48, 206 (1988) [JETP Lett. 48, 225 (1988)].Google Scholar
  17. 17.
    H. Fukuyama, J. Phys. Soc. Japan 58, 47 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Serota, unpublished.Google Scholar
  19. 19.
    E. Akkermans and B. Shapiro, unpublished.Google Scholar
  20. 20.
    R.B, Dingle, Proc. Roy. Soc. A211, 517 (1952).ADSGoogle Scholar
  21. 21.
    H.F. Cheung, E.K. Riedel and Y. Gefen, Phys. Rev. Lett. 62, 587 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    U. Sivan and Y. Imry, Phys. Rev. Lett. 61, 1001 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. Shapiro
    • 1
  1. 1.Department of PhysicsTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations