Skip to main content

Cytoskeletal Organization of Normal and Leukemic Lymphocytes and Lymphoblasts

  • Chapter
Blood Cell Biochemistry Volume 3

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 3))

  • 103 Accesses

Abstract

The cytoskeleton of eukaryotic cells is a complex array composed of three sets of filaments: (1) microfilaments, 4 to 7 nm in diameter, made up mainly of actin; (2) intermediate filaments, 8 to 11 nm in diameter, formed by at least five distinct classes of proteins; and (3) microtubules, 25 nm in diameter, consisting of tubulin (for review, see Alberts et al., 1983). Many proteins have been described that interconnect these filaments or link them to various organelles. The cytoskeleton is involved in many basic cellular functions, including maintenance of cell shape, motility, organelle movement, and mitosis. Studies of cytoskeletal protein expression and organization have increased our understanding of the cellular adaptation during differentiation and pathological processes (for a review, see Rungger-Brändle and Gabbiani, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, U., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature (London) 323:560–564

    CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, The cytoskeleton, in Molecular Biology of the Cell,pp. 549–609, Garland Publishing Inc., New York, New York

    Google Scholar 

  • Albrecht, D. L., and Noelle, R. J., 1988, Membrane Ig-cytoskeletal interactions. I. Flow cytofluorometric and biochemical analysis of membrane IgM-cytoskeletal interactions, J. Immunol. 141:3915–3922

    PubMed  CAS  Google Scholar 

  • Anderson, K. C., Bates, M. P., Slaughenhoupt, B. L., Pinkus, G. S., Schlossman, S. F., and Nadler, L. M. 1984, Expression of human B cell-associated antigens on leukemias and lymphomas: A model of human B cell differentiation, Blood 63:1424–1433

    PubMed  CAS  Google Scholar 

  • Atkins, H., and Anderson, P. J., 1982, Actin and tubulin of normal and leukaemic lymphocytes, Biochem. J. 207:535–539

    PubMed  CAS  Google Scholar 

  • Azzarelli, B., Easterling, K., and Norton, J. A., 1989, Leukemic cell-endothelial cell interactions in leukemic cell dissemination, Lab. Invest. 60:45–64

    PubMed  CAS  Google Scholar 

  • Bachvaroff, R. J., and Rapaport, F. T., 1980, Active secretion of cytoskeletal and mechanicochemical proteins in EBV-genome positive human lymphocytes, Transplant. Proc. 12:205–208

    PubMed  CAS  Google Scholar 

  • Bachvaroff, R. J., Miller, F., and Rapaport, F. T., 1980, Appearance of cytoskeletal components on the surface of leukemia cells and lymphocytes transformed by mitogens and Epstein-Barr virus, Proc. Natl. Acad. Sci. USA 77:4479–4983

    Google Scholar 

  • Baldari, C. T., and Telford, J. L., 1989, The intracellular precursor of I1–1β is associated with microtubules in activated U 937 cells, J. Immunol. 142:785–791

    PubMed  CAS  Google Scholar 

  • Barber, B. H., and Delovitch, T. L., 1979, The identification of actin as a major lymphocyte component, J. Immunol. 122:320–325

    PubMed  CAS  Google Scholar 

  • Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implication for more complex cells, Annu. Rev. Biochim. 54:273–304

    CAS  Google Scholar 

  • Black, J. D., Koury, S. K., Bankert, R. B., and Repasky, E. A., 1988, Heterogeneity in lymphocyte spectrin distribution: Ultrastructural identification of a new spectrin-rich cytoplasmic structure, J. Cell Biol. 106:97–109

    PubMed  CAS  Google Scholar 

  • Bourguignon, L. Y. W., and Bourguignon, G., 1981, Immunocytochemical localization of intermediate filament proteins during lymphocyte capping, Cell. Biol. Int. Rep. 5:783–789

    PubMed  CAS  Google Scholar 

  • Bourguignon, L. W., and Bourguignon, G. I., 1984, Capping and the cytoskeleton, Int. Rev. Cytol. 87:195–224

    PubMed  CAS  Google Scholar 

  • Bourguignon, L. W., Suchard, S. J., Nagpal, M. L., and Glenney, J. R. Jr., 1985, A T-lymphoma glycoprotein (gp 180) is linked to the cytoskeletal protein, fodrin, J. Cell Biol. 101:477–487

    PubMed  CAS  Google Scholar 

  • Branton, D., Cohen, C. M., and Tylor, J., 1981, Interaction of cytoskeletal proteins of the human erythrocyte membrane, Cell 24:24–32

    PubMed  CAS  Google Scholar 

  • Braun, J. K., Fujiwara, K., Pollard, T. D., and Unanue, E. R., 1978, Two distinct mechanisms for redistribution of lymphocyte surface marcomolecules. I. Relationship of cytoplasmic myosin, J. Cell Biol. 79:409–418

    PubMed  CAS  Google Scholar 

  • Braun, J. P., Hochman, P. S., and Unanue, E. R., 1982, Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeletal matrix of the B-lymphocyte, J. Immunol. 128:1198–1204

    PubMed  CAS  Google Scholar 

  • Bretscher, A., 1983, Microfilaments organization in the cytoskeleton of the intestinal brush border, Cell Muscle Motil. 4:239–268

    PubMed  CAS  Google Scholar 

  • Bretscher, M. S., 1984, Endocytosis: Relation to capping and locomotion, Science 244:681–686

    Google Scholar 

  • Brinkley, B. R., Cox, S. M., Pepper, D. A., Wible, L., Brenner, S., and Pardue, R. L., 1981, Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells, J. Cell Biol. 90:554–562

    PubMed  CAS  Google Scholar 

  • Bulinski, J. C., Kumar, S., Titani, K., and Hauschka, S. D., 1983, Peptide antibody specific for the amino terminus of skeletal muscle α-actin, Proc. Natl. Acad. Sci. USA 80:1506–1510

    PubMed  CAS  Google Scholar 

  • Burland, T., Gull, K., Schedl, R., Boston, R., and Dove, W., 1983, Cell type-dependent expression of tubulins in Physarum, J. Cell Biol. 97:1852–1859

    PubMed  CAS  Google Scholar 

  • Caligaris-Cappio, F., Bergui, L., Tesio, L., Corbascio, G., Tousco, F., and Marchisio, P. M., 1986, Cytoskeleton organization is aberrantly rearranged in the cells of B chronic lymphocytic leukemia and hairy cell leukemia, Blood 67:233–239

    PubMed  CAS  Google Scholar 

  • Campbell, F. R., 1983, Intercellular contacts of lymphocytes during migration across high-endothelial venules of lymph nodes: An electron microscopic study, Anat. Rec. 207:643–652

    PubMed  CAS  Google Scholar 

  • Chang, T. W., Celis, E. C., Eisen, H. N., and Solomon, F., 1979, Crawling movements of lymphocytes on and beneath fibroblasts in culture, Proc. Natl. Acad. Sci. USA 76:2917–2921

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., 1983, The molecular organization of the red cell membrane cytoskeleton, Semin. Hematol. 20:141–158

    PubMed  CAS  Google Scholar 

  • Cohen, H. J., and Gilbertsen, B. B., 1975, Human lymphocyte surface immunoglobulin capping: Normal characteristics and anomalous behaviour of chronic lymphocytic leukemic lymphocytes, J. Clin. Invest. 55:84–93

    PubMed  CAS  Google Scholar 

  • Connell, N. D., and Rheinwald, J. G., 1983, Regulation of the cytoskeleton in mesothelial cells: Reversible loss of keratin and increase in vimentin during rapid growth in culture, Cell 34:245–253

    PubMed  CAS  Google Scholar 

  • Czernobilsky, B., Moll, R., Levy, R., and Franke, W. W., 1985, Co-expression of cytokeratin and vimentin filaments in mesothelial, granuloas and rete ovarii cells of human ovary, Eur. J. Cell. Biol. 37:175–190

    PubMed  CAS  Google Scholar 

  • Del Buono, B. J., Williamson, P. L., and Schlegel, R. A., 1988, Relation between the organization of spectrin and of membrane lipids in lymphocytes, J. Cell Biol. 106:697–703

    PubMed  Google Scholar 

  • Dellagi, K., and Brouet, J.-C., 1982, Redistribution of intermediate filaments during capping of lymphocyte surface molecules, Nature (London) 298:284–286

    CAS  Google Scholar 

  • Dellagi, K., Vainchenker, W., Vinci, G., Paulin, D., and Brouet, J. C., 1983, Alteration of vimentin intermedi- ate filament expression during differentiation of human hemopoietic cells, EMBO J. 2:1509–1514

    PubMed  CAS  Google Scholar 

  • Dellagi, K., Brouet, J. C., Portier, M. M., and Lenoir, G. M., 1984, Abnormal expression of vimentin intermediate filaments in human lymphoid cell lines whith deletion or translocation of the distal end of chromosome 8, J. Natl. Cancer Inst. 73:95–99

    PubMed  CAS  Google Scholar 

  • de Petris, S., 1974, Inhibition and reversal of capping by cytochalasins B, vinblastine and colchicine, Nature (London) 250:54–55

    Google Scholar 

  • Fagraeus, A., Biberfeld, G., and Norberg, R., 1980, Reaction of anti-actin antibodies with lymphoid cells, Cell. Mol. Biol. 26:129–134

    CAS  Google Scholar 

  • Fechheimer, M., and Cebra, J. J., 1979, Isolation and characterization of actin and myosin from B-lymphocytic guinea pig leukemia cells, J. Immunol. 122:2590–2597

    PubMed  CAS  Google Scholar 

  • Fechheimer, M., and Zigmond, S. H., 1983, Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides, Cell. Motil. 3:349–361

    PubMed  CAS  Google Scholar 

  • Feller, A. C., 1990, Phenotypic analysis of human T cell lymphomas, Progr. Pathol. 131: in press

    Google Scholar 

  • Franke, W. W., and Moll, R., 1987, Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular reticulum cells of human lymph nodes, tonsils, and spleen, Differentiation 36:145–163

    PubMed  CAS  Google Scholar 

  • Franke, W. W., Schmid, E., Winter, S., Osborn, M., and Weber, K., 1979, Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultered cells from diverse vertebrates, Exp. Cell. Res. 123:25–46

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Ryan, G. B., and Majno, G., 1971, Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction, Experientia 27:549–550

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Chaponnier, C., Zumbe, A., and Varsalli, P., 1977, Actin and tubulin co-cap with surface immunoglobulin in mouse B-lymphocytes, Nature (London) 269:697–698

    CAS  Google Scholar 

  • Gabbiani, G., Kapanci, Y., Barazzone, P., and Franke, W. W., 1981, Immunochemical identification of intermediate-sized filaments in human neoplastic cells: A diagnostic aid for surgical pathologists, Am. J. Pathol. 104:206–216

    PubMed  CAS  Google Scholar 

  • Gabbiani, G., Gabbiani, F., Lombardi, D., and Schwartz, S. M., 1983, Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells, Proc. Natl. Acad. Sci. USA 80:2361–2364

    PubMed  CAS  Google Scholar 

  • Garrels, J. I., and Gibson, W., 1976, Identification and characterization of multiple forms of actin, Cell 9:793–805

    PubMed  CAS  Google Scholar 

  • Glenney, J. R., and Glenney, P., 1983, Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution, Cell 34:503–512

    PubMed  CAS  Google Scholar 

  • Glenney, J. R., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin and intestinal brush border proteins (TW-260/ 240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79:4002–4005

    PubMed  CAS  Google Scholar 

  • Goodman, S. R., and Shiffer, K., 1983, The spectrin membrane skeleton of normal and abnormal human erythrocytes: A review, Am. J. Physiol. 244:C121–C141

    PubMed  CAS  Google Scholar 

  • Goroff, D. K., Stall, A., Mond, J. J., and Finkelman, F. D., 1986, In vitro and in vivo B lymphocyte-activation properties of monoclonal anti-delta antibodies. I. Determinants of B lymphocyte-activating properties, J. Immunol. 136:2382–2392

    PubMed  CAS  Google Scholar 

  • Gregorio, C. C., Black, J. D., Lee, J. K., and Repasky, E. A., 1989, Organization of spectrin and ankyrin in lymphocytes, J. Cell Biol. 107:26a

    Google Scholar 

  • Gupta, S. K., and Woda, B. A., 1988, Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve alpha-actinin, J. Cell. Immunol. 140:176–182

    CAS  Google Scholar 

  • Hamada, H., Leavitt, J., and Kakanuga, T., 1981, Mutated β-actin gene: Coexpression with an unmutated allele in a chemically transformed human fibroblast cell line, Proc. Nad. Acad. Sci. USA 78:3634–3637

    CAS  Google Scholar 

  • Hartwig, J. H., Niederman, R., and Lind, S. E., 1985, Cortical actin structures and their relationship to mammalian cell movements, Subcell. Biochem. 11:1–49

    PubMed  CAS  Google Scholar 

  • Hatano, S., and Oosawa, F., 1966, Isolation and characterization of plasmodium actin, Biochim. Biophys. Acta 127:488–498

    PubMed  CAS  Google Scholar 

  • Hoessli, D., Rungger-Brandle, E., Jockusch, B., and Gabbiani, G., 1980, Lymphocyte alpha-actinin: Rela-tionship to cell membrane and co-capping with surface receptors, J. Cell Biol. 84:305–313

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7:281–308

    PubMed  CAS  Google Scholar 

  • Jackson, B. W., Grund, C., Schmid, E., Burki, K., Franke, W. W., and Illmensee, K., 1980, Formation of cytoskeletal elements during mouse embryogenesis: Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos, Differentiation 20:203–216

    Google Scholar 

  • Jalkanen, S., Jalkanen, M., Bargatze, R., Tarami, M., and Butcher, E. C., 1988, Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man, J. Immunol. 141:1615–1623

    PubMed  CAS  Google Scholar 

  • Johnson, K. A., Porter, M. E., and Shimizu, T., 1984, Mechanism of force production for microtubuledependent movements, J. Cell Biol. 99:1325–1365

    Google Scholar 

  • Kakunaga, T., Leavitt, J., and Hamada, H., 1984, A mutation in actin associated with neoplastic transformation, Fed. Proc. 43:2274–2275

    Google Scholar 

  • Kammer, G. M., Smith, J. A., and Mitchel, R., 1983, Capping of human T cell specific determinants: Kinetics of capping and receptor re-expression and regulation by the cytoskeleton, J. Immunol. 130:38–44

    PubMed  CAS  Google Scholar 

  • Kammer, G. M., Walter, E. J., and Medof, M. E., 1988, Association of cytoskeletal re-organization with capping of the complement decay accelerating factor on T lymphocytes, J. Immunol. 141:2924–2928

    PubMed  CAS  Google Scholar 

  • Katz, P., Zaytoun, A. M., and Lee, J. H., 1982, Mechanisms of human cell-mediated cytotoxicity. III. Dependence of natural killing on microtubule and microfilament and microfilament integrity, J. Immunol. 129:2816–2825

    PubMed  CAS  Google Scholar 

  • Kerrick, W. G. L., and Bourguignon, L. Y. W., 1984, Capping of muse T-lymphoma cells is regulated by a calcium activated myosin light chain kinase, Proc. Natl. Acad. Sci. USA 81:165–169

    PubMed  CAS  Google Scholar 

  • Kocher, O., Skalli, O., Cerruti, D., Gabbiani, F., and Gabbiani, G., 1985, Cytoskeletal features of rat aortic cells during development: An electron microscopic, immunohistochemical and biochemical study, Circ. Res. 56:829–838

    PubMed  CAS  Google Scholar 

  • Korn, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev. 62:672–737

    PubMed  CAS  Google Scholar 

  • Korsmeyer, S. J., Arnold, A., Bakhshi, A., Ravetch, J. V., Siebenlist, U., Hieter, P. A., Sharrow, S. D., Lebien, T. W., Kersey, J. H., Poplack, D. G., Leder, P., and Waldmann, T. A., 1983, Immunoglobulin gene re-arrangement and cell surface antigen expression in acute lymphocytic leukemias of T cell und B cell precursor origins, J. Clin. Invest. 71:301–313

    PubMed  CAS  Google Scholar 

  • Laub, F., Kaplan, M., and Gitler, C., 1981, Actin polymerization accompanies Thy-1 capping on mouse thymocytes, FEBS Leu. 124:35–38

    CAS  Google Scholar 

  • Leavitt, J., Leavitt, A., and Attallah, A. M., 1980, Dissimilar modes of expression of β- and γ-actin in normal and leukemic human T lymphocytes, J. Biol. Chem. 255:4984–4987

    PubMed  CAS  Google Scholar 

  • Lee, J. K., and Repasky, E. A., 1987, Cytoskeletal polarity in mammalian lymphocytes in situ, Cell. Tissue Res. 247:195–202

    PubMed  CAS  Google Scholar 

  • Lee, J. K., Black, J. D., Repasky, E. A., Kubo, R. T., and Bankert, R. B., 1988, Activation induces a rapid reorganization of spectrin in lymphocytes, Cell 55:807–816

    PubMed  CAS  Google Scholar 

  • Liebes, L. F., Quagliata, F., and Silber, R., 1978, The anomalous capping behaviour of chronic lymphocytic leukemia lymphocytes: Studied with an anti-lymphocyte antiserum, Clin. Immunol. Immunopathol. 10:222–232

    PubMed  CAS  Google Scholar 

  • Liebes, L. F., Fleit, H., Zucker-Franklin, D., and Silber, R., 1980, Human lymphocyte tubulin: Purification and characterization in normal and leukemic cells, Biochim. Biophys. Acta 633:245–257

    PubMed  CAS  Google Scholar 

  • Mely-Goubert, B., and Bellgrau, D., 1981, Actin content in lymphocytes: A proposed correlation with their recirculating properties, J. Immunol. 127:399–401

    PubMed  CAS  Google Scholar 

  • Mescher, M. F., Jose, M. J. L., and Balk, S. P., 1981, Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells, Nature (London) 289:139–144

    CAS  Google Scholar 

  • Meyer, W. H., and Howard, T. H., 1983, Changes in actin content during induced myeloid maturation of human promyelocytes, Blood 62:308–314

    PubMed  CAS  Google Scholar 

  • Miyasaka, M., Mely-Goubert, W. M., Dudler, L., and Trnka, Z., 1984, Actin activity is high in the immunocompetent fraction of thymocytes, Thymus 6:57–65

    PubMed  CAS  Google Scholar 

  • Willer, P., Momburg, F., Hofmann, W. J., and Matthaei-Maurer, D. U., 1988, Lack of vimentin occurring during the intrafollicular stages of B cell development characterizes follicular center cell lymphoma, Blood 71:1033–1038

    Google Scholar 

  • Monroe, J. G., and Cambier, J. C., 1983, B cell activation. II. Receptor cross-linking by thymus-independent and thymus-dependent antigens induces a rapid decrease in the plasma membrane potential of antigen-binding B lymphocytes, J. Immunol. 131:2641–2644

    PubMed  CAS  Google Scholar 

  • Nagata, K., Sagara, J., and Ichikawa, Y., 1980, Changes in contractile proteins during differentiation of myeloid leukemia cells. I. Polymerization of actin, J. Cell Biol. 85:273–282

    PubMed  CAS  Google Scholar 

  • Nakarro, G., Robbins, K. C., and Reddy, E. P., 1984, Gene product of v-fgr onc: Hybrid protein containing a portion of actin and a tyrosine specific protein kinase, Science 223:63–66

    Google Scholar 

  • Nelson, W. J., and Lazarides, E., 1983, Expression of the beta-subunit of spectrin in nonerythroid cells, Proc. Natl. Acad. Sci. USA 80:363–367

    PubMed  CAS  Google Scholar 

  • Neuhaus, J. M., Wanger, M., Keisler, T., and Wegner, A., 1983, Treadmilling of actin, J. Muscle Res. Cell. Motil. 4:507–527

    PubMed  CAS  Google Scholar 

  • Olmsted, J. B., Cox, J. V., Asness, C. F., Parysek, L. M., and Lyon, H. D., 1984, Cellular regulation of microtubule organization, J. Cell Biol. 99:28S–32S

    PubMed  CAS  Google Scholar 

  • Owen, M. J., Auger, J., Barber, B. H., Edwards, A. J., Walsh, F. S., and Crompton, M. J., 1978, Actin may be present on the lymphocyte surface, Proc. Natl. Acad. Sci. USA 75:4484–4488

    PubMed  CAS  Google Scholar 

  • Osborn, M., and Weber, K., 1983, Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology, Lab. Invest. 48:372–394

    PubMed  CAS  Google Scholar 

  • Pauly, J. L., Bankert, R. B., and Repasky, E. A., 1986, Immunofluorescent patterns of spectrin in lymphocyte cell lines, J. Immunol. 136:246–253

    PubMed  CAS  Google Scholar 

  • Petrini, M., Emerson, D. L., and Galbraith, R. M., 1983, Linkage between surface immunoglobulin and cytoskeleton of B lymphocytes may involve Gc protein, Nature (London) 306:73–74

    CAS  Google Scholar 

  • Phatak, P. D., Packman, C. H., and Lichtman, M. A., 1988, Protein kinase C modulates actin conformation in human T lymphocytes, J. Immunol. 141:2929–2934

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., Selden, S. C., and Maupin, P., 1984, Interaction of actin filaments whith microtubules, J. Cell Biol. 99:33S–37S

    PubMed  CAS  Google Scholar 

  • Quillan, M., Castello, C., Krishan, A., and Rubin, R., 1985, Cell surface tubulin in leukemic cells: Molecular structure, surface binding, turnover, cell cycle expression and origin, J. Cell Biol. 101:2345–2354

    Google Scholar 

  • Raff, E. C., 1984, Genetics of microtubule systems, J. Cell Biol. 99:1–10

    PubMed  CAS  Google Scholar 

  • Ramaekers, F. C. S., Osborn, M., Schmid, E., Weber, K., Bloemendal, H., and Franke, W. W., 1980, Identification of the cytoskeletal proteins in lens-forming cells, a special epitheloid cell type, Exp. Cell Res. 127:309–327

    PubMed  CAS  Google Scholar 

  • Ramaekers, F. C. S., Vroom, T. M., Moesker, O., Kant, A., Scholte, G., and Vooijs, G. P., 1985, The use of antibodies to intermediate filament proteins in the different diagnosis of lymphoma versus metastatic carcinoma, Histochem. J. 17:57–79

    PubMed  CAS  Google Scholar 

  • Rao, K. M. K., 1984, Lectin-induced actin polymerization in human lymphocytes: A possible signal for mitogenesis, Cell. Immunol. 83:181–188

    PubMed  CAS  Google Scholar 

  • Rao, K. M., and Varani, J., 1982, Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils, J. Immunol. 129:1605–1607

    PubMed  CAS  Google Scholar 

  • Repasky, E. A., Granger, B. L., and Lazarides, E., 1982, Widespread occurrence of avian spectrin in nonerythroid cells, Cell 29:821–833

    PubMed  CAS  Google Scholar 

  • Repasky, E. A., Symer, D. E., and Bankert, R. B., 1984, Spectrin immunofluorescence distinguishes a population of naturally capped lymphocytes in situ, J. Cell Biol. 9:350–355

    Google Scholar 

  • Rothstein, T. L., 1986, Stimulation of B cells by sequential addition of antiimmunoglobulin antibody and cytochalasin, J. Immunol. 136:813–816

    PubMed  CAS  Google Scholar 

  • Rungger-Brändle, E., and Gabbiani, G., 1983, The role of cytoskeletal and cytocontractile elements in pathologic processes, Am. J. Pathol. 110:361–392

    PubMed  Google Scholar 

  • Ryser, J. E., Rungger-Brändle, E., Chaponnier, C., Gabbiani, G., and Vassalli, P., 1982, The area of attachment of cytotoxic T lymphocytes to their target cells shows high motility and polarization of actin, but not myosin, J. Immunol. 128:1159–1162

    PubMed  CAS  Google Scholar 

  • Sanders, S., and Craig, S. W., 1983, A lymphocyte cell surface molecule that is antigenically related to actin, J. Immunol. 131:370–377

    PubMed  CAS  Google Scholar 

  • Schliwa, M., 1982, Action of cytochalasin D on cytoskeletal networks, J. Cell Biol. 92:79–91

    PubMed  CAS  Google Scholar 

  • Schmitt-Gräff, A., Chaponnier, C., and Gabbiani, G., 1987a, Cytoskeletal organization of peripheral blood normal and leukemic lymphocytes and lymphoblasts, J. Submicroscop. Cytol. 19:329–335

    Google Scholar 

  • Schmitt-Gräff, A., Scheulen, M. E., and Gabbiani, G., 1987b, Cytoskeletal organization in acute leukemias, Haematol. Blood Transfus. 30:302–307

    Google Scholar 

  • Schmitt-Gräff, A., Skalli, O., and Gabbiani, G., 1989, Alpha-smooth muscle actin is expressed in a subset of bone marrow stromal cells in normal and pathological conditions, Virchows Arch. B 57:291–302

    PubMed  Google Scholar 

  • Schreiner, G. F., Braun, J., and Unanue, E. R., 1976, Spontaneous redistribution of surface immuno-globulin in the motile B lymphocyte, J. Exp. Med. 144:1683–1688

    PubMed  CAS  Google Scholar 

  • Schreiner, G. F., Fujiwara, K., Pollard, T., and Unanue, E. R., 1977, Redistribution of myosin accompanying capping of surface Ig, J. Exp. Med. 145:1393–1398

    PubMed  CAS  Google Scholar 

  • Sewell, H. F., Thompson, W. D., and King, D. J., 1986, IgD myeloma/immunoblastic lymphoma cells expressing cytokeratin, Br. J. Cancer 53:695–696

    PubMed  CAS  Google Scholar 

  • Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G., 1986a, A monoclonal antibody against a-smooth muscle actin: A new probe for smooth muscle differentiation, J. Cell Biol. 103:2787–2796

    CAS  Google Scholar 

  • Skalli, O., Bloom, W. S., Ropraz, P., Azzarone, B., and Gabbiani, G., 1986b, Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: Relationship to culture conditions and analogies to in vivo situations, J. Submicroscop. Cytol. 18:481–493

    CAS  Google Scholar 

  • Skalli, O., Gabbiani, G., Babai, F., Seemayer, T. A., Pizzolato, G., and Schürch, W., 1988, Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas, Am. J. Pathol. 130:515–531

    PubMed  CAS  Google Scholar 

  • Skalli, O., Schürch, W., Seemayer, T., Lagace, R., Montandon, D., Pittet, B., and Gabbiani, G., 1989, Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins, Lab. Invest. 60:275–285

    PubMed  CAS  Google Scholar 

  • Southwick, F. S., and Stossel, T. P., 1983, Contractile proteins in leukocyte function, Semin. Hematol. 20:305–321

    PubMed  CAS  Google Scholar 

  • Spangrude, G. J., Braaten, B. A., and Daynes, R. A., 1984, Molecular mechanisms of lymphocyte extravasa-tion. I. Studies of two selective inhibitors of lymphocyte recirculation, J. Immunol. 132:354–362

    PubMed  CAS  Google Scholar 

  • Stark, R., Liebes, L. F., Nevrla, D., Conklyn, M., and Silber, R., 1982, Decreased actin content of lympho-cytes from patients with chronic lymphocytic leukemia, Blood 59:536–541

    PubMed  CAS  Google Scholar 

  • Stark, R. S., Liebes, L. F., Shelanski, M. L., and Silber, R., 1984, Anomalous function of vimentin in chronic lymphocytic leukemia lymphocytes, Blood 63:415–420

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985, The molecular biology of intermediate filaments, Cell 42:411–419

    PubMed  CAS  Google Scholar 

  • Stokke, B. T., Mikkelsen, A., and Elgsaeter, A., 1986a, The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechano-chemical properties, Eur. Biophys. J. 13:219–233

    CAS  Google Scholar 

  • Stokke, B. T., Mikkelsen, A., and Elgsaeter, A., 1986b, The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations, Eur. Biophys. J. 13:203–218

    CAS  Google Scholar 

  • Stossel, T. P., 1984, Contribution of actin to the cytoplasmic matrix, J. Cell Biol. 99:15S–21S

    PubMed  CAS  Google Scholar 

  • Stossel, T. P., Hartwig, J. H., Yin, H. L., Southwick, F. W., and Zaner, K. S., 1984, The motor of leukocytes, Fed. Proc. 43:2760–2763

    PubMed  CAS  Google Scholar 

  • Stossel, T. P., Chaponnier, C., Ezzell, R. M., Hartwig, J. H., Janmey, P. A., Kwiatkowski, D. J., Lind, S. E., Smith, D. B., Southwick, F. S., Yin, H. L., and Zaner, K. S., 1985, Nonmuscle actin-binding proteins, Annu. Rev. Cell Biol. 1:353–402

    PubMed  CAS  Google Scholar 

  • Taylor, R. B., Duffus, P. H., Raff, M. C., and de Pettis, S., 1971, Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecule induced by anti-immunoglobulin antibody, Nature (London) New Biol. 233:225–229

    CAS  Google Scholar 

  • Toccanier-Pelte, M. F., Skalli, O., Kapanci, Y., and Gabbiani, G., 1987, Characterization of stromal cells with myoid features in lymph nodes and spleen in normal and pathologic conditions, Am. J. Pathol. 129:109–118

    PubMed  CAS  Google Scholar 

  • Traub, P., 1985, Intermediate filaments, a review. Springer-Verlag, Berlin

    Google Scholar 

  • Vandekerckhove, J., and Weber, R., 1978, At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the amino-terminal tryptic peptide, J. Mol. Biol. 126:783–802

    PubMed  CAS  Google Scholar 

  • Vandekerckhove, J., and Weber, K., 1979, The complete amino acid sequence from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle, a protein chemical analysis of muscle actin differentiation, Differentiation 14:123–133

    PubMed  CAS  Google Scholar 

  • Varani, J., Wass, J. A., and Rao, K. M. K., 1983, Actin changes in normal human and rat leukocytes and in transformed human leukocytic cells, J. Natl. Cancer Inst. 70:805–809

    PubMed  CAS  Google Scholar 

  • Wagstaff, J., Gibson, C., Thatcher, N., and Crowther, D., 1981, The migratory properties of indium-111 oxine labelled lymphocytes in patients with chronic lymphocytic leukemia, Br. J. Haematol. 49:283–291

    PubMed  CAS  Google Scholar 

  • Weeds, A., 1982, Actin-binding proteins—regulators of cell architecture and motility, Nature (London) 296:811–816

    CAS  Google Scholar 

  • Wegner, A., 1985, Subleties of actin assembly, Nature (London) 313:97–98

    CAS  Google Scholar 

  • White, J. R., Naccache, P. H., and Sha’afi, R. I., 1983, Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils, J. Biol. Chem. 258:14041–14047

    PubMed  CAS  Google Scholar 

  • Williamson, P., Antia, R., and Schlegel, R. A., 1987, Maintenance of membrane phospholipid asymmetry: Lipid-cytoskeletal interactions or lipid pump?, FEBS Lett. 219:316–320

    PubMed  CAS  Google Scholar 

  • Woda, B. A., and Woodin, M. B., 1984, The interaction of lymphocyte membrane proteins with the lymphocyte cytoskeletal matrix, J. Immunol. 133:2767–2772

    PubMed  CAS  Google Scholar 

  • Woodcock-Mitchel, J., Mitchel, J. J., Low, R. B., Kieney, M., Sengel, M., Sengel, P., Rubbia, L., Skalli, O., Jackson, B., and Gabbiani, G., 1988, Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles, Differentiation 39:161–166

    Google Scholar 

  • Woodrum, D. L., Rich, S. A., and Pollard, T. D., 1975, Evidence for biaised unidirectional polymerization of actin filaments using heavy meromyosin by an improved method, J. Cell Biol. 67:231–237

    PubMed  CAS  Google Scholar 

  • Zauli, D., Gobbi, M., Crespi, C., Tazzari, P. L., Miserocchi, F., and Tassinari, A., 1988, Cytoskeleton organization of normal and neoplastic lymphocytes and lymphoid cell lines of T and B origin, Br. J. Haematol. 68:405–409

    PubMed  CAS  Google Scholar 

  • Zucker-Franklin, D., Liebes, L. F., and Silber, R., 1979, Differences in the behaviour of the membrane and membrane-associated filamentous structures in normal and chronic lymphocytic leukemia (CLL) lymphocytes, J. Immunol. 122:97–107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmitt-Gräff, A., Gabbiani, G. (1991). Cytoskeletal Organization of Normal and Leukemic Lymphocytes and Lymphoblasts. In: Harris, J.R. (eds) Blood Cell Biochemistry Volume 3. Blood Cell Biochemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3796-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3796-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6692-8

  • Online ISBN: 978-1-4615-3796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics