Advertisement

Myeloperoxidase: Localization, Structure, and Function

  • Andreas Tobler
  • H. Phillip Koeffler
Part of the Blood Cell Biochemistry book series (BLBI, volume 3)

Abstract

Myeloperoxidase (MPO) is a heme-containing enzyme that, in the presence of peroxide and halide ions, is effective in killing various microorganisms; in addition, it exerts a wide variety of extracellular functions. Polymorphonuclear leukocytes (PMN) are the main source of this enzyme. MPO is a myeloid cell-specific enzyme whose synthesis is tightly regulated at the promyelocyte stage of differentiation of myeloid cells. This review will consider recent developments concerning the biochemical and molecular structure, biosynthesis and processing, and various possible functions of MPO.

Keywords

Acute Promyelocytic Leukemia Lysosomal Enzyme Human Neutrophil Chronic Granulomatous Disease Levulinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agar, N. S., Sadradeh, S. M. H., Hallaway, P. E., Eaton, J. W., 1986, Erythrocyte catalase. A somatic oxidant defense, J. Clin. Invest. 79:319–321CrossRefGoogle Scholar
  2. Agner, K., 1941a, Verdoperoxidase. A ferment isolated from leucocytes, Acta Physiol. Scand. 2(Suppl. 8):162Google Scholar
  3. Agner, K., 1941b, Detoxicating effect of verdoperoxidase on toxins, Nature (London) 159:271–272CrossRefGoogle Scholar
  4. Agner, K., 1950, Studes on peroxidative detoxification of purified diphtheria toxin, J. Exp. Med. 92:337–342PubMedCrossRefGoogle Scholar
  5. Agner, K., 1958, Crystalline myeloperoxidase, Acta Chem. Scand. 12:89–94CrossRefGoogle Scholar
  6. Akin, D. T., and Kinkade, J. M., 1986, Processing of a newly identified intermediate of human myeloperoxidase in isolated granules occurs at neutral pH, J. Biol. Chem. 261:8370–8375PubMedGoogle Scholar
  7. Akin, D., Kinkade, J. M., and Parmley, R. T., 1987, Biochemical and ultrastructural effects of monensin on the processing, intracellular transport, and packaging of myeloperoxidase into low and high density compartments of human leukemia (HL-60) cells, Arch. Biochem. Biophys. 257:451–463PubMedCrossRefGoogle Scholar
  8. Albrich, J. M., McCarthy, C. A., and Hurst, J. K., 1981, Biological reactivity of hypochlorus acid: Implication for microbicidal mechanisms of myeloperoxidase from leukocytes, Proc. Natl. Acad. Sci. USA 78:210–214PubMedCrossRefGoogle Scholar
  9. Albrich, J. M., Gilbaugh, J. H., III, Callahan, K. B., and Hurst, J. K., 1986, Effects of the putative neutrophilgenerated toxin, hypochlorus acid, on membrane permeability and transport systems of Escherichia coli, J. Clin. Invest. 78:177–184PubMedCrossRefGoogle Scholar
  10. Allen, R. C., 1975, Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leucocyte in the phenomenon of electronic excitation, Biochem. Biophys. Res. Commun. 63:675–683PubMedCrossRefGoogle Scholar
  11. Andersen, M. R., Atkin, C. L., and Eyre, H. J, 1982, Intact form of myeloperoxidase from normal human neutrophils, Arch. Biochem. Biophys. 214:273–283PubMedCrossRefGoogle Scholar
  12. Andrews, P. C., and Krinsky, N. I., 1981, The reductive cleavage of myeloperoxidase in half, producing enzymatically active hemimyeloperoxidase, J. Biol. Chem. 256:4211–4218PubMedGoogle Scholar
  13. Andrews, P. C., Parnes, C., and Krisnky, N. I., 1984, Comparison of myeloperoxidase and hemi-myeloperox-idase with respect to catalysis, regulation, and bactericidal activity, Arch. Biochem. Biophys. 228:439–442PubMedCrossRefGoogle Scholar
  14. Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R. J., Rahmsdorf, H., Carsten, J., Herrlich, P., and Karin, M., 1987, Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor, Cell 49:729–739PubMedCrossRefGoogle Scholar
  15. Arnlijots, K., and Olsson, I., 1987, Myeloperoxidase precursors incorporate heme, J. Biol. Chem. 262:10430–10433Google Scholar
  16. Atkin, C. L., Andersen, M. R., and Eyre, H. J., 1982, Normal neutrophil myeloperoxidase from a patient with chronic myelocytic leukemia, Arch. Biochem. Biophys. 214:284–292PubMedCrossRefGoogle Scholar
  17. Atkinson, P. H., and Lee, J. T., 1983, Cotranslational excision of alpha-glucose and alpha-mannose in nascent vesicular stomatitis G proteins, EMBO J. 2:823–832Google Scholar
  18. Babcock, G. T., Ingle, R. T., Oertling, W. A., Davis, J. C., Averill, B. A., Hulse, C. L., Stufkens, D. J., Bolscher, B. G. J. M., Wevers, R., and Raman, P., 1985, Characterization of human myeloperoxidase and bovine spleen hemoprotein. Insight into chromophore structure and evidence that the chromophores of myeloperoxidases are equivalent, Biochim. Biophys. Acta 828:58–66PubMedCrossRefGoogle Scholar
  19. Badway, J. A., and Karnovsky, M. L., 1980, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem. 49:695–726CrossRefGoogle Scholar
  20. Baehner, R. L., Nathan, D. G., and Castle, W. B., 1971, Oxidant injury of Caucasian glucose-6-phosphate dehydrogenase-deficient red blood cells by phagocytosing leukocytes during infection, J. Clin. Invest. 50:2466–2473PubMedCrossRefGoogle Scholar
  21. Bainton, D. F., and Farquhar, M. G., 1968, Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes, J. Cell Biol. 39:299–317PubMedCrossRefGoogle Scholar
  22. Bainton, D. F., Ullyot, J. L., and Farquar, M. G., 1971, The development of neutrophilic polymorphonuclear leukocytes in human bone marrow, J. Exp. Med. 134:907–933PubMedCrossRefGoogle Scholar
  23. Bakkenist, A. R. J., Wever, R., Vulsma, T., Plat, H., and Van Gelder, F., 1978, Isolation procedure and some properties of myeloperoxidase from human leukocytes, Biochim. Biophys. Acta 524:45–54PubMedCrossRefGoogle Scholar
  24. Bakkenist, A. R. J., De Boer, J. E. G., Plat, H., and Wever, R., 1980, The halide complexes of myeloperox- idase and the mechanism of the halogenation reactions, Biochim. Biophys. Acta 613:337–348PubMedCrossRefGoogle Scholar
  25. Becker, B. N., Henson, P., Showell, H. J., and Hsu, L. S., 1974, The ability of chemotactic factors to induce lysosomal enzyme release. I. The characteristics of the release, the importance of surfaces and the relation of enzyme release to chemotactic responsiveness, J. Immunol. 112:2047–2054PubMedGoogle Scholar
  26. Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D. A. G., Gralnick, H. R., and Sultan, C., 1976, Proposal for the classification of acute leukemia, Br. J. Haematol. 33:451–458PubMedCrossRefGoogle Scholar
  27. Bennett, J. M., Catovsky, D., Daniel, M. T., Flandrin, G., Galton, D., Gralnick, H. R., and Sultan, C., 1985, Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-AmericanBritish cooperative group, Ann. Intern. Med. 103:626–629Google Scholar
  28. Berkow, R. L., and Dodson, R. W., 1978, Functional analysis of the marginating pool of human polymorphonuclear leukocytes, Am. J. Hematol. 24:47–54CrossRefGoogle Scholar
  29. Birnboim, H. C., 1982, DNA strand breakage in human leukocytes exposed to a tumor promotor, phorbol myristate acetate, Science 215:1247–1249PubMedCrossRefGoogle Scholar
  30. Bos, A., Weyer, R., and Dirk, R., 1978, Characterization and quantification of the peroxidase in human monocytes, Biochim. Biophys. Acta 525:37–44PubMedCrossRefGoogle Scholar
  31. Bradley, M., and Erickson, L. C., 1981, Comparison of the effects of hydrogen peroxide and x-rays irradiation on toxicity, mutation, and DNA damage/repair in mammalian cells (V-79), Biochim. Biophys. Acta 654:135–141PubMedCrossRefGoogle Scholar
  32. Bradley, P. P., Christensen, R. D., and Rothstein, G., 1982, Cellular and extracellular myeloperoxidase in pyogenic inflammation, Blood 60:618–622PubMedGoogle Scholar
  33. Bretz, U., and Baggiolini, M., 1974, Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes, J. Cell Biol. 63:251–269PubMedCrossRefGoogle Scholar
  34. Bringmann, G., 1953, Elektronenmikroskopische Befunde zur Wirkung von Chlor, Brom, Jod, Kupfer, Silber and Wasserstoffsuperoxide auf E. coli, Z. Hyg. Infektionskr. 138:155–166PubMedCrossRefGoogle Scholar
  35. Cantin, A. M., North, S. L., Fells, G. A., Hubbard, R. C., and Crystal, R. G., 1987, Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis, J. Clin. Invest. 79:1665–1673PubMedCrossRefGoogle Scholar
  36. Cech, P., and Lehrer, R. I., 1984, Phagolysosomal pH of human neutrophils, Blood 63:88–95PubMedGoogle Scholar
  37. Cech, P., Stalder, H., Widman, J. J., Rohrer, A., and Miescher, P. A., 1979, Leukocyte myeloperoxidase deficiency and diabetes mellitus associated with Candida albicans liver abscess, Am. J. Med. 66:149–153PubMedCrossRefGoogle Scholar
  38. Chang, S. K., Trujillo, J. M., Cook, R. G., and Stass, S. A., 1986, Human myeloperoxidase gene: Molecular cloning and expression in leukemic cells, Blood 68:1411–1414PubMedGoogle Scholar
  39. Cheh, A. M., Skochdopole, J., Koski, P., and Cole, L., 1980, Nonvolatile mutagens in drinking water. Production by chlorination and destruction of sulfide, Science 207:90–92PubMedCrossRefGoogle Scholar
  40. Clark, R. A., 1982, Chemotactic factors trigger their own oxidative inactivation by human neutrophils, J. Immunol. 129:2725–2728PubMedGoogle Scholar
  41. Clark, R. A., 1983, Extracellular effects of the myeloperoxidase-hydrogen peroxide-halide system, in Advances in Inflammation Research (G. Weissmann, ed.), pp. 107–146, Raven Press, New York.Google Scholar
  42. Clark, R. A., 1986, Oxidative inactivation of pneumolysin by the myeloperoxidase system and stimulated human neutrophils, J. Immunol. 136:4617–4622PubMedGoogle Scholar
  43. Clark, R. A., and Borregaard, N., 1985, Neutrophils autoinactivate secretory products by myeloperoxidasecatalyzed oxidation, Blood 65:375–381PubMedGoogle Scholar
  44. Clark, R. A., and Klebanoff, S. J., 1977, Myeloperoxidase-H2O2-halide system: Cytotoxic effect on human blood leukocytes, Blood 50:65–70PubMedGoogle Scholar
  45. Clark, R. A., and Klebanoff, S. J., 1979a, Myeloperoxidase-mediated platelet release reaction, J. Clin. Invest. 63:177–183CrossRefGoogle Scholar
  46. Clark, R. A., and Klebanoff, S. J., 1979b, Chemotactic factor inactivation by the myeloperoxidase-hydrogen peroxide-halide system, J. Clin. Invest. 64:913–920CrossRefGoogle Scholar
  47. Clark, R. A., and Klebanoff, S. J., 1980, Neutrophil-platelet interaction mediated by myeloperoxidase and hydrogen peroxide, J. Immunol. 124:399–407PubMedGoogle Scholar
  48. Clark, R. A., and Szot, S., 1982, Chemotactic factor inactivation by stimulated human neutrophils mediated by myeloperoxidase-catalyzed methionine oxidation, J. Immunol. 128:1507–1513PubMedGoogle Scholar
  49. Clark, R. A., Olsson, I., and Klebanoff, S. J., 1976, Cytotoxicity for tumor cells of cationic proteins from human neutrophil granules, J. Cell Biol. 70:719–723PubMedCrossRefGoogle Scholar
  50. Clark, R. A., Szot, S., Venkatasubramanian, K., and Schiffmann, E., 1980, Chemotactic factor inactivation by myeloperoxidase mediated oxidation of methionine, J. Immunol. 124:2020–2029PubMedGoogle Scholar
  51. Clark, R. A., Stone, P. J., El Hag, A., Calore, J. D., and Franzblau, C., 1981, Myeloperoxidase-catalyzed inactivation of alpha-1 protease inhibitor by human neutrophils, J. Biol. Chem. 256:3348–3353PubMedGoogle Scholar
  52. Clark, R. A., Szot, S., Williams, M. A., and Kagan, H. M., 1986, Oxidation of lysine side-chains of elastin by the myeloperoxidase system and by stimulated neutrophils, Biochem. Biophys. Res. Commun. 135:451–457PubMedCrossRefGoogle Scholar
  53. Collins, S. J., Gallo, R. C., and Gallagher, R. E., 1977, Continuous growth and differentiation of human myeloid leukemia cells in suspension culture, Nature (London) 270:347–349CrossRefGoogle Scholar
  54. Cramer, E., Pryzwansky, K. B., Villeval, J. L., Testa, U., and Breton-Gorius, J., 1985, Ultrastructural localization of lactoferrin and human myeloperoxidase in human neutrophils by immunogold, Blood 65:423–432PubMedGoogle Scholar
  55. Cuperus, R. A., Muijers, A. O., and Wever, R., 1986, The superoxide dismutase activity of myeloperoxidase; formation of compound III, Biochim. Biophys. Acta 871:78–84PubMedCrossRefGoogle Scholar
  56. Cuperus, R. A., Hoogland, H., Wever, R., and Muijers, A. O., 1987, The effect of D-penicillamine on myeloperoxidase: Formation of compound III and inhibition of the chlorinating activity, Biochim. Biophys. Acta 912:124–131PubMedCrossRefGoogle Scholar
  57. Dallegri, F., Patrone, F., Frumento, G., Ballestro, A., and Sacchetti, C., 1985, Downregulation of natural Killer cell activity by neutrophils, Blood 65:571–577PubMedGoogle Scholar
  58. Dallegri, F., Patrone, F., Ballestrero, A., Frumento, G., and Sacchetti, C., 1986, Inhibition of neutrophil cytolysin production by target cells, Blood 67:1265–1272PubMedGoogle Scholar
  59. Dani, C., Blanchard, M., Piechaczyk, M., El Sabouty, S., Marty, L., and Janteur, P., 1984, Extreme instability of myc mRNA in normal and transformed human cells, Proc. Natl. Acad. Sci. USA 81:7046–7050PubMedCrossRefGoogle Scholar
  60. Desser, R. K., Himmelhoch, S. R., Evans, W. H., Januska, M., Mage, M., and Shelton, E., 1972, Guinea pig heterophil and eosinophil peroxidase, Arch. Biochem. Biophys. 148:452–465PubMedCrossRefGoogle Scholar
  61. Diamond, R. D., Clark, R. A., and Haudenschild, C. C., 1980, Damage to Candida albicans hyphae and pseudohyphae by the myeloperoxidase system and oxidative producers of neutrophil metabolism in vitro, J. Clin. Invest. 66:908–917PubMedCrossRefGoogle Scholar
  62. Edwards, E. W., and Swan, T. F., 1986, Regulation of superoxide generation by myeloperoxidase during the respiratory burst of human neutrophils, Biochem. J. 237:601–604PubMedGoogle Scholar
  63. Ehrenberg, A., and Agner, K., 1958, The molecular weight of myeloperoxidase, Acta Chem. Scand. 12: 95–100CrossRefGoogle Scholar
  64. Elder, J. H., and Alexander, S., 1982, Endo-beta-N-acetylglucosaminidase F: Endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins, Proc. Natl. Acad. Sci. USA 79:4540–4544PubMedCrossRefGoogle Scholar
  65. El-Hag, A., and Clark, R. A., 1984, Down-regulation of human natural killer activity against tumors by the neutrophil myeloperoxidase system and hydrogen peroxide, J. Immunol. 133:3291–3297PubMedGoogle Scholar
  66. El-Hag, A., and Clark, R. A., 1987, Immunosuppression by activated human neutrophils. Dependence on the myeloperoxidase system, J. Immunol. 139:2406–2413PubMedGoogle Scholar
  67. El-Hag, A., Lipsky, P. E., Bennett, M., and Clark, R. A., 1986, Immunomodulation by neutrophil myeloperoxidase and hydrogen peroxide: Differential susceptibility of human lymphocyte functions, J. Immunol. 136:3420–3426PubMedGoogle Scholar
  68. Elsbach, P., 1973, On the interaction between phagocytes and microorganisms, N. Engl. J. Med. 16:846–852Google Scholar
  69. Suematsu, M., Oshio, C., Mura, S., Suzuki, M., Houzawa, S., and Tsuchiya, M., 1988, Luminol-dependent photoemission from single neutrophil stimulated by phorbol ester and calcium ionophore—role of de granulation and myeloperoxidase, Biochem. Biophys. Res. Commun. 155:106–111PubMedCrossRefGoogle Scholar
  70. Elsbach, P., and Weiss, J. A., 1983, A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of the phagocytes, Rev. Infect. Dis. 5:843–853PubMedCrossRefGoogle Scholar
  71. English, D., and Lukens, J. N., 1983, Regulation of neutrophil inflammatory mediator release: Chemotactic peptide activation of stimulus-dependent cytotoxicity, J. Immunol. 130:850–860PubMedGoogle Scholar
  72. Felberg, N. T., and Schultz, J., 1972, Evidence that myeloperoxidase is composed of isoenzymes, Arch. Biochem. Biophys. 148:407–413PubMedCrossRefGoogle Scholar
  73. Felberg, N. T., Putterman, G. J., and Schultz, J., 1969, Myeloperoxidase X: Comparison of normal human leukocyte myeloperoxidase prepared with and without the use of trypsin, Biochem. Biophys. Res. Commun. 37:213–218PubMedCrossRefGoogle Scholar
  74. Ferrari, S., Mariano, M. T., Tagliafico, E., Sarti, M., Ceccherelli, G., Selleri, L., Merli, F., Nami, F., Donelli, A., Torelli, G., and Torelli, U., 1988, Myeloperoxidase gene expression in blast cells with lymphoid phenotype in cases of acute lymphoblastic leukemia, Blood 72:873–876PubMedGoogle Scholar
  75. Foote, C. S., Goyne, T. E., and Lehrer, R. I., 1983, Assessment of chlorination by human neutrophils, Nature 301:715–716PubMedCrossRefGoogle Scholar
  76. Fucci, L., Oliver, C. N., Coon, M. J., and Stadtman, E. R., 1983, Inactivation of key metabolic enzymes by mixed-function oxidation reaction: Possible implication in protein turnover and aging, Proc. Natl. Acad. Sci. USA 80:1521–1525PubMedCrossRefGoogle Scholar
  77. Gabig, T. G., and Babior, B. M., 1979, The O2-forming oxidase responsible for the respiratory burst in human neutrophils, J. Biol. Chem. 254:9070–9074PubMedGoogle Scholar
  78. Gallin, J. I., Wright, D. G., and Schiffmann, E., 1978, Role of secretory events in modulating human neutrophil chemotaxis, J. Clin. Invest. 62:1364–1374PubMedCrossRefGoogle Scholar
  79. Ganz, T., Selsted, M. E., and Lehrer, R. I., 1986, Antimicrobial activity of phagocyte granule proteins, Semin. Respir. Infect. 1:107–117PubMedGoogle Scholar
  80. Goldstein, I., Hoffstein, S., Gallin, J., and Weissmann, G., 1973, Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement, Proc. Natl. Acad. Sci. USA 70:2916–2920PubMedCrossRefGoogle Scholar
  81. Greaves, M. F., Chan, L. C., Furley, A. J. W., Watt, S. M., and Molgaard, H. V., 1986, Lineage promiscuity in hematopoietic differentiation and leukemia, Blood 67:1–11PubMedGoogle Scholar
  82. Grisham, M. B., Jefferson, M. M., and Thomas, E. L., 1984a, Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils, J. Biol. Chem. 259:6757–6765Google Scholar
  83. Grisham, M. B., Jefferson, M. M., Melton, D. F., and Thomas, E. L., 1984b, Chlorination of endogenous amines by isolated neutrophils: Ammonia-dependent bactericidal, cytotoxic, and catalytic activities of the chloramines, J. Biol. Chem. 259:10404–10413Google Scholar
  84. Hamers, M. N., Bot, A. A. M., Weening, R. S., Sips, H. J., and Ross, D., 1984, Kinetics and mechanism of the bactericidal action of human neutrophils against Escherichia coli, Blood 64:635–641PubMedGoogle Scholar
  85. Handin, R. I., Karabin, R., and Boxer, G. J., 1977, Enhancement of platelet function by superoxide anion, J. Clin. Invest. 59:959–965PubMedCrossRefGoogle Scholar
  86. Harlan, J. M., Killer, P. D., Harker, L. A., Striker, G. E., and Wright, D. G., 1981, Neutrophil mediated injury in vitro. Mechanism of cell detachment, Clin. Invest. 68: 1394–1403CrossRefGoogle Scholar
  87. Harrison, J. E., and Schultz, J., 1978, Myeloperoxidase: Confirmation and nature of heme-binding ine-quivalence. Resolution of a carbonyl-substituted heme, Biochim. Biophys. Acta 536:341–349PubMedCrossRefGoogle Scholar
  88. Harrison, J. E., Pabalan, S., and Schultz, J., 1977, The subunit structure of crystalline canine myeloperoxidase, Biochim. Biophys. Acta 493:247–259PubMedCrossRefGoogle Scholar
  89. Hasilik, A., and Von Figura, K., 1984, Processing of lysosomal enzymes in fibroblasts, in Lysosomes in Biology and Pathology (J. T. Doyle, R. T. Dean, and W. Sly, eds.), pp. 3–26, Elsevier Science Publications, New YorkGoogle Scholar
  90. Hasilik, A., Pohlmann, R., Steckel, F., Gieselmann, V., Von Figura, K., Olsen, R., and Waheed, A., 1983, Biosynthesis and transport of lysosomal enzymes, in 13th Lindstrom-Lang Conference on Translational and Post-Translational Events,pp. 349–369, The Humana Press, Inc., Clifton, N.J.Google Scholar
  91. Hasilik, A., Pohlmann, R., Olsen, R. L., and Von Figura, K., 1984, Myeloperoxidase is synthesized as a larger phosphorylated percursor, EMBO J. 3:2671–2676PubMedGoogle Scholar
  92. Hashinaka, K., Nishio, C., Hur, S.-J., Sakiyama, F., Tsunasawa, S., and Yamada, M., 1988, Multiple species of myeloperoxidase messenger RNAs produced by altered splicing and differential polyadenylation, Biochemistry 27:5906–5914PubMedCrossRefGoogle Scholar
  93. Henderson, W. R., and Klebanoff, S. J., 1983, Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals, Biochem. Biophys. Res. Commun. 110:266–272PubMedCrossRefGoogle Scholar
  94. Henderson, W. R., Joerg, A., and Klebanoff, S. J., 1982, Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4, and D4, J. Immunol. 128:2609–2613PubMedGoogle Scholar
  95. Henson, P. M., 1980, Mechanisms of exocytosis in phagocytic inflammatory cells, Am. J. Pathol. 101: 494–511Google Scholar
  96. Himmelhoch, R. S., Evans, W. H., Mage, M. G., and Peterson, E. A., 1969, Purification of myeloperoxidase from the bone marrow of the guinea pig, Biochemistry 8:914–921PubMedCrossRefGoogle Scholar
  97. Ikeda-Saito, M., and Prince, R. C., 1985, The effect of chloride on the REDO and EPR properties of myeloperoxidase, J. Biol. Chem. 260:8301–9305PubMedGoogle Scholar
  98. Jaffe, B. D., Sabath, D. E., Johnson, G. D., Moscinski, L. C., Johnson, K. R., Rovera, G., Nauseef, W. M., and Prystowsky, M. B., 1988, Myeloperoxidase and oncogene expression in GM-CSF induced bone marrow differentiation, Oncogene 2:167–174PubMedGoogle Scholar
  99. Janoff, A., 1985, Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis, Am. Rev. Respir. Dis. 132:417–433PubMedGoogle Scholar
  100. Jasin, H. E., 1983, Generation of IgG aggregates by the myeloperoxidase-hydrogen peroxide system, J. Immunol. 130:1918–1923PubMedGoogle Scholar
  101. Jasin, H. E., 1988, Oxidative cross-linking of immune complexes by human polymorphonuclear leukocytes, J. Clin. Invest. 81:6–15PubMedCrossRefGoogle Scholar
  102. Jensen, M. S., and Bainton, D. F., 1973, Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte, J. Cell Biol. 56:379–338PubMedCrossRefGoogle Scholar
  103. Johnson, K. R., Nauseef, M., Care, A., Wheelock, M. J., Shane, S., Hudson, Koeffler, H. P., Selsted, M., Miller, C., and Rovera, G., 1987a, Characterization of cDNA clones for human myeloeproxidase: Predicted amino acid sequence and evidence for multiple mRNA species, Nucleic Acids Res. 15:2013–2028CrossRefGoogle Scholar
  104. Johnson, R., Couser, W. G., Chi, E. Y., Adler, S., and Klebanoff, S. J., 1987b, New mechanism for glomerular injury. Myeloperoxidase-hydrogen peroxide-halide system, J. Clin. Invest. 79:1379–1387CrossRefGoogle Scholar
  105. Johnson, R. J., Klebanoff, S. J., Ochi, R. F., Adler, S., Baker, P., Sparks, L., and Couser, W. G., 1987c, Participation of the myeloperoxidase-H2O2-halide system in immune complex nephritis, Kidney Int. 32:342–349CrossRefGoogle Scholar
  106. Johnson, R. J., Guggenheim, S. J., Klebanoff, S. J., Ochi, R. F., Wass, A., Baker, P., Schulze, M., and Couser, W. G., 1988, Morphologic correlates of glomerular oxidant injury induced by the myeloperoxidase-hydrogen peroxide-halide system of the neutrophil, Lab. Invest. 5:294–301Google Scholar
  107. Kettle, A. J., and Winterbourn, C. C., 1988, Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorus acid, Biochem. J. 252:529–536PubMedGoogle Scholar
  108. Kimura, S., and Ikeda-Saito, M., 1988, Human Myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionary related members of the same gene, Proteins 3:113–120PubMedCrossRefGoogle Scholar
  109. Kinkade, J. M. J., Pember, S. O., Barnes, K. C., Shapira, R., Spitznagel, J. R., and Martin, L. E., 1983, Differential distribution of distinct forms of myeloperoxidase in different azurophilic granule subpopulations from human neutrophils, Biochem. Biophys. Res. Commun. 114:296–303PubMedCrossRefGoogle Scholar
  110. Kitahara, M., Eyre, H. J., Simonian, Y., Atkin, C. L., and Hasstedt, S. J., 1981, Hereditary myeloperoxidase deficiency, Blood 57:88–893Google Scholar
  111. Klebanoff, S. J., 1968, Myeloperoxidase-halide-hydrogen peroxide antimicrobial system, J. Bacteriol. 95:2131–2138PubMedGoogle Scholar
  112. Klebanoff, S. J., 1970, Myeloperoxidase-mediated antimicrobial systems and their role in leukocyte function, in Biochemistry of the Phagocytic Process: Localization and the Role of Myeloperoxidase and the Mechanism of the Halogenation Reaction (J. Schultz, ed.), pp. 89–110, Elsevier/North-Holland, AmsterdamGoogle Scholar
  113. Klebanoff, S. J., 1980a, Myeloperoxidase-mediated cytotoxic systems, in The Reticuloendothelial System, Vol. 2. Biochemistry and Metabolism (A. J. Sbarra and R. R. Strauss, eds.), pp. 279–308, Plenum Press, New YorkGoogle Scholar
  114. Klebanoff, S. J., 1980b, Oxygen metabolism and the toxic properties of phagocytes, Ann. Intern. Med. 93: 480–489Google Scholar
  115. Klebanoff, S. J., 1988, Phagocytic cells: Products of oxygen metabolism, in Inflammation: Basic Principles and Clinical Correlates (J. I. Gallin and R. Snyderman, eds.), pp. 391–444, Raven Press, New YorkGoogle Scholar
  116. Klebanoff, S. J., and Clark, R. A., 1975, Hemolysis and iodination of erythrocyte components by a my- eloperoxidase-mediated system, Blood 45:699–707PubMedGoogle Scholar
  117. Klebanoff, S. J., and Pincus, S. H., 1971, Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: A possible microbicidal control mechanism, J. Clin. Invest. 50:2226–2229PubMedCrossRefGoogle Scholar
  118. Klebanoff, S. J., and Smith, D. C., 1970, The source of H2O2 for the uterine fluid-mediated sperm-inhibitory system, Biol. Reprod. 3:236–242PubMedGoogle Scholar
  119. Klebanoff, S. J., Clark, R. A., and Rosen, H., 1976, Myeloperoxidase-mediated cytotoxicity, in Cancer Enyzymology (J. Schultz and F. Ahmad, eds.), pp. 267–288, Academic Press, New YorkGoogle Scholar
  120. Klebanoff, S. J., Waktersdirogm, A. M., and Rosen, H., 1984, Antimicrobial activity of myeloperoxidase, Methods Enzymol. 105:399–423PubMedCrossRefGoogle Scholar
  121. Klempner, M. S., Dinarello, C. A., and Gallin, J. I., 1978, Human leukocyte pyrogen induces release of specific granule contents from human neutrophils, J. Clin. Invest. 61:1330–1336PubMedCrossRefGoogle Scholar
  122. Koeffler, H. P., 1983, Induction of differentiation of human acute myelogenous leukemia cells: Therapeutic implications, Blood 62:709–721PubMedGoogle Scholar
  123. Koeffler, H. P., 1986, Human acute myeloid leukemia lines: Models of leukemogenesis, Semin. Hematol. 23:223–236PubMedGoogle Scholar
  124. Koeffler, H. P., Ranyard, J., and Pertchek, M., 1985, Myeloperoxidase: Its structure and expression during myeloid differentiation, Blood 65:484–491PubMedGoogle Scholar
  125. Kornfeld, S., 1986, Trafficking of lysosomal enzymes in normal and disease states, J. Clin. Invest. 77:1–6PubMedCrossRefGoogle Scholar
  126. Lee, C. W., Lewis, R. A., Tauber, A. I., Mehrotra, M., Corey, E. J., and Austen, K. F., 1983, The my- eloperoxidase-dependent metabolism of leukotrienes C4, D4, and E4 to 6-trans-leukotriene B4 di- astereoisomers and the subclass-specific S-diastereoisomeric sulfoxides, J. Biol. Chem. 258:15004–15010PubMedGoogle Scholar
  127. Lehrer, R. I., 1975, The fungicidal mechanisms of human monocytes. I. Evidence for myeloperoxidase-linked and myeloperoxidase-independent candidicidal mechanisms, J. Clin. Invest. 55:338–346PubMedCrossRefGoogle Scholar
  128. Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to candida infection, J. Clin. Invest. 48:1478–1488PubMedCrossRefGoogle Scholar
  129. Lichtenstein, A., 1986, Spontaneous tumor cytolysis mediated by inflammatory neutrophils: Dependence upon divalent cations and reduced oxygen intermediates, Blood 67:657–665PubMedGoogle Scholar
  130. Lichtenstein, A., Ganz, T., Selsted, M. E., and Lehrer, R. I., 1986, In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes, Blood 68:1407–1410PubMedGoogle Scholar
  131. Lichtenstein, A. K., Ganz, T., Selsted, M. E., and Lehrer, R. I., 1988, Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins, Cell. Immunol. 114:104–116PubMedCrossRefGoogle Scholar
  132. Locksley, R. M., Wilson, C. B., and Klebanoff, S. J., 1983, Increased respiratory burst in myeloperoxidasedeficient monocytes, Blood 62:902–909PubMedGoogle Scholar
  133. Lubbert, M., Miller, C. W., and Koeffler, H. P., submitted for publication, Methylation and chromatin changes in the human myeloperoxidase gene during myeloid differentiation (submitted for publication)Google Scholar
  134. Mandell, G. L., 1976, Intraphagosomal pH of human polymorphonuclear neutrophils, Proc. Soc. Exp. Med. 134:447–449Google Scholar
  135. Marshall, R. D., 1974, Glycoproteins, Annu. Rev. Biochem. 41:673–702CrossRefGoogle Scholar
  136. Matheson, N. R., and Travis, J., 1985, Differential effects of oxidizing agents on human plasma alpha-1-proteinase inhibitor and human neutrophil myeloperoxidase, Biochemistry 24:1941–1945PubMedCrossRefGoogle Scholar
  137. Matheson, N. R., Wong, D. S., and Travis, J., 1979, Enzymatic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase, Biochem. Biophys. Res. Commun. 88:402–409PubMedCrossRefGoogle Scholar
  138. Matheson, N. R., Wong, P. S., and Travis, J., 1981a, Isolation and properties of human neutrophil myeloperox-idase, Biochemistry 20:325–330CrossRefGoogle Scholar
  139. Matheson, N. R., Wong, P. S., Schuler, M., and Travis, J., 1981b, Interaction of human alpha- 1-proteinase inhibitor with neutrophil myeloperoxidase, Biochemistry 20:331–336CrossRefGoogle Scholar
  140. McCulloch, E. A., 1987, Lineage infidelity or lineage promiscuity, Leukemia 1:135–140Google Scholar
  141. McRipley, R. J., and Sbarra, A. J., 1967, Role of the phagocyte in host-parasite interactions, J. Bacteriol. 94:1425–1430PubMedGoogle Scholar
  142. Meerhof, L. J., and Roos, D., 1980, An easy, specific and sensitive assay for the determination of catalase activity of human blood cells, J. Reticuloendothel. Soc. 28:419–425PubMedGoogle Scholar
  143. Miller, C. W., Rovera, G., VanTuinen, P., Kitchingman, G., Bernstein, I., and Koeffler, H. P., 1989, Myeloperoxidase gene in acute promyelocytic leukemia, Science 244:823–826CrossRefGoogle Scholar
  144. Miyasaki, K. T., Wilson, M. E., Brunetti, A. J., and Genco, R. J., 1986a, Oxidative and nonoxidative killing of Actinobacillus actinomycetemconcomitans by human neutrophils, Infect. Immun. 53:154–160Google Scholar
  145. Miyasaki, K. T., Wilson, M. E., Cohen, E., Jones, P. C., and Genco, R. J., 1986, Evidence for and partial characterization of three major and three minor chromographic forms of human neutrophil myeloperoxidase, Arch. Biochem. Biophys. 246:751–764PubMedCrossRefGoogle Scholar
  146. Miyasaki, K. T., Zambon, J. J., Jones, C. A., and Wilson, M. E., 1987, Role of high-avidity binding of human neutrophil myeloperoxidase in the killing of Actinobacillus actinomycetemconcomitans, Infect. Immun. 55:1029–1036PubMedGoogle Scholar
  147. Morishita, K., Kubota, N., Asano, S., Kaziro, Y., and Nagata, S., 1987a, Molecular cloning and characterization of cDNA for human myeloperoxidase, J. Biol. Chem. 262:3844–3851Google Scholar
  148. Morishita, K., Tschiya, M., Asano, S., Kaziro, Y., and Nagata, S., 1987b, Chromosomal gene structure of human myeloperoxidase and regulation of its expression by granulocyte colony-stimulating factor, J. Biol. Chem. 262:15208–15313Google Scholar
  149. Morrison, M., and Schonbaum, G. R., 1976, Peroxidase-catalyzed halogenation, Annu. Rev. Biochem. 45:861–888PubMedCrossRefGoogle Scholar
  150. Morse, J. O., 1978, Alpha-1-antitrypsin deficiency, N. Engl. J. Med. 299:1045–1048, 1099–1105PubMedCrossRefGoogle Scholar
  151. Murao, S. I., Stevens, F. J., Ito, A., and Huberman, E., 1988, Myeloperoxidase: A myeloid nuclear antigen with DNA-binding properties, Proc. Natl. Acad. Sci. USA 85:1232–1236PubMedCrossRefGoogle Scholar
  152. Nathan, C. F., Brukner, L., Silverstein, S., and Cohn, Z. A., 1979, Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity, J. Exp. Med. 149:8499Google Scholar
  153. Nauseef, W. M., 1986, Myeloperoxidase biosynthesis by a human promyelocytic leukemia cell line: Insight into myeloperoxidase deficiency, Blood 67:865–872PubMedGoogle Scholar
  154. Nauseef, W., 1987, Posttranslational processing of a human lysosomal protein, myeloperoxidase, Blood 70:1143–1150PubMedGoogle Scholar
  155. Nauseef, W. M., 1988, Myeloperoxidase deficiency. Hematol. Oncol. Clin. North Am. 2:135–158PubMedGoogle Scholar
  156. Nauseef, W. M., 1989, Aberrant restriction endonuclease digests of DNA from subjects with hereditary myeloperoxidase deficiency, Blood 73:290–295PubMedGoogle Scholar
  157. Nauseef, W. M., and Clark, R. A., 1986, Separation and analysis of sub cellular organelles in human promyelocytic leukemia cell line, HL-60: Application to the study of myeloid lysosomal enzyme synthesis and processing, Blood 68:442–449PubMedGoogle Scholar
  158. Nauseef, W. M., and Malech, H. L., 1986, Analysis of the peptide subunits of human neutrophil myeloperoxidase, Blood 67:1504–1507PubMedGoogle Scholar
  159. Nauseef, W. M., Root, R. K., and Malech, H. L., 1983a, Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency, J. Clin. Invest. 71:1297–1307CrossRefGoogle Scholar
  160. Nauseef, W. M., Metcalf, J. A., and Root, R. K., 1983b, Role of myeloperoxidase in the respiratory burst of human neutrophils, Blood 61:483–492Google Scholar
  161. Odajiama, T., 1980, Myeloperoxidase of the leukocyte of normal blood. Nature of the prosthetic group of myeloperoxidase, J. Biochem. 87:379–391Google Scholar
  162. Odajima, T., 1981, Oxidative destruction of microbial metabolite aflatoxin by the myeloperoxidase-hydrogen peroxide-chloride system, Arch. Oral Biol. 26:339–340PubMedCrossRefGoogle Scholar
  163. Odajima, T., and Yamazaki, I., 1972, Myeloperoxidase of the leukocyte of normal blood. III. The reaction of ferric myeloperoxidase with superoxide anion, Biochim. Biophys. Acta 284:355–359PubMedCrossRefGoogle Scholar
  164. Olsen, R. L., and Little, C., 1983, Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood, Biochem. J. 209:781–787PubMedGoogle Scholar
  165. Olsen, R. L., and Little, C., 1984, Studies on the subunits of human myeloperoxidase, Biochem. J. 222:701–709PubMedGoogle Scholar
  166. Olsson, I., Persson, A. M., and Stroemberg, K., 1984, Biosynthesis, transport and processing of myeloperoxidase in the human leukemic promyelocytic cell line HL-60 and normal bone marrow cells, Biochem. J. 223:911–920PubMedGoogle Scholar
  167. Olsson, I., Lantz, M., Persson, A. M., and Amljots, K., 1988, Biosynthesis and processing of lactoferrin in bone marrow cells, a comparison with processing of myeloperoxidase, Blood 71:441–447PubMedGoogle Scholar
  168. Ooi, W., Levine, H. G., LaMont, J. T., and Clark, R. A., 1984, Inactivation of Clostridium difficile cytotoxin by the neutrophil myeloperoxidase system, J. Infect. Dis. 149:215–219PubMedCrossRefGoogle Scholar
  169. Paredes, J. M., and Weiss, S. J., 1982, Human neutrophils transform prostaglandin by a myeloperoxidasedependent mechanism, J. Biol. Chem. 257:2738–2740PubMedGoogle Scholar
  170. Parry, M. F., Root, R. K., Metcalf, J. A., Delaney, K. K., Kaplow, L. S., and Richard, W. J., 1981, Myeloperoxidase deficiency. Prevalence and clinical significance, Ann. Intern. Med. 95:293–301PubMedGoogle Scholar
  171. Pember, S. O., and Kinkade, J. M., Jr., 1983, Differences in myeloperoxidase activity from neutrophilic polymorphonuclear leukocytes of differing density: Relationship to selective exocytosis of distinct forms of the enzyme, Blood 61:1116–1124PubMedGoogle Scholar
  172. Pember, S. O., Kellar, K. L., Winton, E. F., and Kinkade, F. M., 1981, Chromatographic isolation of two murine leukocyte peroxidases distinct from eosinophil peroxidase, isoenzymes or cell line-specific proteins, J. Reticuloendothel. Soc. 29:451–458PubMedGoogle Scholar
  173. Pember, S. O., Fuhrer-Kruesi, S. M., Barnes, K. C., and Kinkade, J. M., 1982, Isolation of three native forms of myeloperoxidase from human polymorphonuclear leukocytes, FEBS Lett. 140:103–108PubMedCrossRefGoogle Scholar
  174. Pember, S. O., Shapira, R., and Kinkade, J. M. J., 1983, Multiple forms of myeloperoxidase from human neutrophilic granulocytes: Evidence for differences in compartmentalization, enzymatic activity, and subunit structure, Arch. Biochem. Biophys. 221:391–403PubMedCrossRefGoogle Scholar
  175. Peppin, G. J., and Weiss, S. J., 1986, Activation of endogenous metalloproteinase, gelatinase, by triggered human neutrophils, Proc. Natl. Acad. Sci. USA 83:4322–4326PubMedCrossRefGoogle Scholar
  176. Root, R. K., and Cohen, M. S., 1981, The microbicidal mechanism of human neutrophils and eosinophils, Rev. Infect. Dis. 3:565–598PubMedCrossRefGoogle Scholar
  177. Rosen, H., and Klebanoff, S. J., 1982, Oxidation of Escherichia coli iron centers by the myeloperoxidasemediated microbicidal system, J. Biol. Chem. 257:13731–13725PubMedGoogle Scholar
  178. Rosen, H., and Klebanoff, S. J., 1985, Oxidation of microbial iron-sulfur centers by the myeloperoxidaseH2O2-halide antimicrobial system, Infect. Immun. 47:613–618PubMedGoogle Scholar
  179. Rosen, H., Rakita, R. M., Waltersdorph, A. M., and Klebanoff, S. J., 1987, Myeloperoxidase-mediated damage to the succinate oxidase system of Escherichia coli, J. Biol. Chem. 242:15004–15010Google Scholar
  180. Rosmarin, A. G., Weil, S. C., Rosner, G. L., Griffin, J. D., Arnout, M. A., and Tenen, D. G., 1989, Differential expression of CD1lb/CD18 (Mol) and myeloperoxidase genes during myeloid differentiation, Blood 73:131–136PubMedGoogle Scholar
  181. Rowley, J. D., 1978, General report on the first International Workshop on chromosomes in leukemia, Int. J. Cancer 21:307–308PubMedCrossRefGoogle Scholar
  182. Sagoh, T., and Yamada, M., 1988, Transcriptional regulation of myeloperoxidase gene expression in myeloid leukemia HL-60 cells during differentiation into granulocytes and macrophages, Arch. Biochem. Biophys. 262:599–604PubMedCrossRefGoogle Scholar
  183. Sbarra, A. J., Selvaraj, R. J., Paul, B. B., Zgliczynski, J. M., Poskitt, K. F., Mitchell, G. W., and Loui, F., 1976, Chlorination, decarboxylation, and bactericidal activity mediated by the MPO-H2O2-Cl-system, Adv. Exp. Med. Biol. 73:191–203PubMedCrossRefGoogle Scholar
  184. Schmid, C. W., and Jelinek, W. R., 1982, The Alu family of dispersed repetitive sequences, Science 216:1065–1070PubMedCrossRefGoogle Scholar
  185. Schraufstaetter, I., Hyslop, P. A., Jackson, J. H., and Cochrane, C. G., 1988, Oxidant-induced DNA damage of target cells, J. Clin. Invest. 82:1040–1050CrossRefGoogle Scholar
  186. Schultz, J., 1980, Myeloperoxidase, in The Reticuloendothelial System, Vol. 2. Biochemistry and Metabolism (A. J. Sbarra and R. R. Strauss, eds.), pp. 231–254, Plenum Press, New YorkGoogle Scholar
  187. Schultz, J., and Kaminker, K., 1962, Myeloperoxidase of the leukocyte of normal human blood. I. Content and localization, Arch. Biochem. Biophys. 98:465–471CrossRefGoogle Scholar
  188. Schultz, J., and Rosenthal, S., 1958, Iron (II) inactivation of myeloperoxidase, J. Biol. Chem. 234:2486–2490Google Scholar
  189. Schultz, J., and Shmukler, H. W., 1964, Myeloperoxidase of the leukocyte of normal human blood. II. Isolation, spectrophotometry, and amino acid analysis, Biochemistry 3:1234–1238PubMedCrossRefGoogle Scholar
  190. Schultz, J., Felberg, N., and John, S., 1967, Myeloperoxidase. VIII. Separation into the components by free-flow electrophoresis, Biochem. Biophys. Res. Commun. 28:543–549PubMedCrossRefGoogle Scholar
  191. Schultz, J., Snyder, H., Wu, N. C., Berger, N., and Bonner, M. J., 1972, Chemical nature and biological activity of myeloperoxidase, in The Molecular basis of Electron Transfer (J. Schultz and B. F. Cameron, eds.), pp. 301–321, Academic Press, New YorkGoogle Scholar
  192. Seaman, W. E., Gindhart, T. D., Blackman, M. A., Dalal, B., Talal, N., and Werb, P., 1981, Suppression of natural killing in vitro by human peripheral blood cells. Suppression of killing in vitro by tumor promoter diesters, J. Clin. Invest. 67:1324–1333PubMedCrossRefGoogle Scholar
  193. Seaman, W. E., Gindhart, T. D., Blackman, M. A., Dalal, B., Talal, N., and Werb, P., 1982, Suppression of natural killing in vitro by monocytes and polymorphonuclear leukocytes. Requirement for reactive metabolites of oxygen, J. Clin. Invest. 69:876–888PubMedCrossRefGoogle Scholar
  194. Segal, A. W., Geisow, M., Garcia, R., Harper, A., and Miller, R., 1981, The respiratory burst of phagocytic cells is associated with a rise in vacuolar pH, Nature (London) 290:406–409CrossRefGoogle Scholar
  195. Selsted, M. E., and Novotny, M. I., 1988, The isoenzyme forms of human myeloperoxidose result from differential N-glycosylation, Blood 72(s):152aGoogle Scholar
  196. Selvaraj, R. J., Zgliczyknski, J. M., Paul, B. B., and Sbarra, A. J., 1978, Enhanced killing of myeloperoxidasecoated bacteria in the myeloperoxidase-H2O2-C1 system, J. Infect. Dis. 137:481–485PubMedCrossRefGoogle Scholar
  197. Shah, S. V., Bancos, W. H., and Basci, A., 1987, Degradation of human glomerular basement membrane by stimulated neutrophils, J. Clin. Invest. 79:25–31PubMedCrossRefGoogle Scholar
  198. Shock, A., and Baum, H., 1988, Inactivation of alpha- 1-proteinase inhibitor in serum by stimulated human polymorphonuclear leucocytes. Evidence for a myeloperoxidase-dependent mechanism, Cell Biochem. Funct. 6:13–23PubMedCrossRefGoogle Scholar
  199. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker. E. L., 1976, The structure activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils, J. Exp. Med. 143:1154–1169PubMedCrossRefGoogle Scholar
  200. Simon, R. H., Scoggin, C. H., and Patterson, D., 1981, Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals, J. Biol. Chem. 256:7180–7186Google Scholar
  201. Sips, H. J., and Hamers, M. N., 1981, Mechanism of bactericidal action of myeloperoxidase: Increased permeability of the Escherichia coli cell envelope, Infect. Immun. 31:11–16PubMedGoogle Scholar
  202. Smedly, L. A., Tonnesen, M. G., Sandhans, R. A., Haslett, C., Guthrie, A., Johnston, R. B., Henson, P. M., and Worthen, G. S., 1986, Neutrophil-mediated injury to endothelial cells. Enhancement by endotoxin and essential role of neutrophil elastase, J. Clin. Invest. 77:1233–1243PubMedCrossRefGoogle Scholar
  203. Stahmann, M. A., and Spencer, A. K., 1977, Deamination of protein lysyl epsilon-amino groups by peroxidase in vitro, Biopolymers 16:1299–1306PubMedCrossRefGoogle Scholar
  204. Stahmann, M. A., Spencer, A. K., Honold, G. R., 1977, Crosslinking of proteins in vitro by peroxidase, Biopolymers 16:1307–1318PubMedCrossRefGoogle Scholar
  205. Stendahl, O., Coble, B. I., Dahlgren, C., Hed, J., and Molin, L., 1984, Myeloperoxidase modulates the phagocytic activity of polymorphonuclear neutrophil leukocytes. Studies with cells from a myeloperoxidase-deficient patient, J. Clin. Invest. 73:366–373PubMedCrossRefGoogle Scholar
  206. Stem, A., 1985, Red cell oxidative damage, in Oxidative Stress (H. Sies, ed.), pp. 321–330, Academic Press, Orlando, Fla.Google Scholar
  207. Strauven, T. A., Armstrong, D., James, G. T., and Austin, J. H., 1978, Separation of leukocyte peroxidase isoenzymes by agarose acrylamide disc electrophoresis, Age 1:111–117CrossRefGoogle Scholar
  208. Stroemberg, K., Persson, A. M., and Olsson, I., 1985, The processing and intracellular transport of my-eloperoxidase. Modulation by lysosomotropic agents and monensin, Eur. J. Cell Biol. 39: 424–431Google Scholar
  209. Suematsu, M., Oshio, C., Mura, S., Suzuki, M., Houzawa, S., and Tsuchiya, M., 1988, Luminol-dependent photoemission from single neutrophil stimulated by phorbol ester and calcium ionophore—role of de-granulation and myeloperoxidase, Biochem. Biophys. Res. Commun. 155: 106–111PubMedCrossRefGoogle Scholar
  210. Suzuki, Y., and Lehrer, R., 1980, NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate, J. Clin. Invest. 66:1409–1418PubMedCrossRefGoogle Scholar
  211. Suzuki, K., Yamada, M., Akashi, K., and Fujikura, T., 1986, Similarity of kinetics of three types of myeloperoxidase from human leukocytes and four types from HL-60 cells, Arch. Biochem. Biophys. 245:167–163PubMedCrossRefGoogle Scholar
  212. Svensson, B. E., Domeij, K., Lindvall, S., and Rydell, G., 1987, Peroxidase and peroxidase-oxidase activities of isolated human myeloperoxidases, Biochem. J. 242:673–680PubMedGoogle Scholar
  213. Tartakoff, A. M., 1983, Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell 32:1026–1028PubMedCrossRefGoogle Scholar
  214. Tauber, A. I., and Goetzl, E. J., 1979, Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization, and partial characterization, Biochemistry 18:5576–5584PubMedCrossRefGoogle Scholar
  215. Test, S. T., and Weiss, S. J., 1984, Quantitative and temporal characterization of the extracellular H2O2 pool generated by human neutrophils, J. Biol. Chem. 259:399–405PubMedGoogle Scholar
  216. Thomas, E. L., Learn, D. B., Jefferson, M. M., and Weatherred, W., 1988, Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils, J. Biol. Chem. 263:2178–2186PubMedGoogle Scholar
  217. Tobler, A., Miller, C. W., Johnson, K. R., Selsted, M. E., Rovera, G., and Koeffler, H. P., 1988, Regulation of gene expression of myeloperoxidase during myeloid differentiation, J. Cell. Physiol. 136: 215–225PubMedCrossRefGoogle Scholar
  218. Tobler, A., Selsted, M. E., Miller, C. W., Johnson, K. R., Novotny, M. J., Rovera, G., and Koeffler, H. P., 1989, Evidence for a pretranslational defect in hereditary and acquired myeloperoxidase deficiency, Blood 73:1980–1986PubMedGoogle Scholar
  219. Tsan, M. F., and Denison, R. C., 1980, Phorbol myristate acetate-induced neutrophil autotoxicity. A comparison with H2O2 toxicity, Inflammation 4:371–380PubMedCrossRefGoogle Scholar
  220. Tsan, M. F., and Denison, R. C., 1981, Oxidation of n-formyl methionyl chemotactic peptide by human neutrophils, J. Immunol. 126:1387–1389PubMedGoogle Scholar
  221. Vaessen, R., Houweling, A., and Vonder, E. A., 1987, Post transcriptional control of class 1 MHC mRNA expression in adenovirus 120 transformed cells, Science 235:1486–1488PubMedCrossRefGoogle Scholar
  222. Valtieri, M., Tweardy, D. J., Caracciolo, D., Johnson, K., Mavilio, F., Altmann, S., Santoli, D., and Rovera, G., 1987, Cytokine-dependent granulocytic differentiation. Regulation of proliferative and differentiative responses in a murine progenitor cell line, J. Immunol. 138:3829–3835PubMedGoogle Scholar
  223. Van Heijne, G., 1986, A new method for predicting signal sequence cleavage site, Nucleic Acids Res. 14:4683–4690CrossRefGoogle Scholar
  224. Van Tuinen, P., Johnson, K. R., Ledbetter, S. A., Nussbaum, R. L., Rovera, G., and Ledbetter, D. H., 1988, Localization of myeloperoxidase to the long arm of human chromosome 17: Relationship to the 15;17 translocation of acute promyelocytic leukemia, Oncogene 1:319–322Google Scholar
  225. Vissers, M. C. M., and Winterboum, C. C., 1986, The effect of oxidants on neutrophil-mediated degradation of glomerular basement membrane-collagen, Biochim. Biophys. Acta 889:277–286PubMedCrossRefGoogle Scholar
  226. Vissers, M. C. M., and Winterbourn, C. C., 1987, Myeloperoxidase-dependent oxidative inactivation of neutrophil neutral proteinases and microbicidal enzymes, Biochem. J. 245:277–280PubMedGoogle Scholar
  227. Voetman, A. A., Weening, R. S., Hamers, N. N., Meerhof, L. J., Bot, A. A. A. M., and Roos, D., 1981, Phagocytosing human neutrophils inactivate their own granular enzymes, J. Clin. Invest. 67:1541–1549PubMedCrossRefGoogle Scholar
  228. Von Figura, K., and Hasilik, A., 1986, Lysosomal enzymes and their receptors, Annu. Rev. Biochem. 55:167–193CrossRefGoogle Scholar
  229. Wagner, D. K., Collins-Lech, C., and Sohnle, P. G., 1986, Inhibition of neutrophil killing of Candida albicans pseudohyphae by substances which quench hypochlorous acid and chloramines, Infect. Immun. 51:731–735PubMedGoogle Scholar
  230. Weiher, H., Koenig, M., and Gruss, P., 1983, Multiple point mutations affecting the simian virus 40 enhancer, Science 219:626–631PubMedCrossRefGoogle Scholar
  231. Weil, C., Rosner, G. L., Reid, M. S., Chisholm, R. L., Farber, N. M., Spitznagel, J. K., and Swanson, M. S., 1987, cDNA cloning of human myeloperoxidase: Decrease of myeloperoxidase mRNA upon induction of HL-60 cells, Proc. Natl. Acad. Sci. USA 84:2057–2061PubMedCrossRefGoogle Scholar
  232. Weil, S. C., Rosner, G. L., Reid, M. S., Chisholm, R. L., Lemons, R. S., Swanson, M. S., Carrino, J. J., Diaz, M. O., and Le Beau, M. M., 1988, Translocation and rearrangement of myeloperoxidase gene in acute promyelocytic leukemia, Science 249:790–792CrossRefGoogle Scholar
  233. Weiss, S. J., Young, J., LoBuglio, A., Slivka, G. E., and Nimeh, N. F., 1981, Role of hydrogen peroxide in neutrophil mediated destruction of cultured endothelial cells, J. Clin. Invest. 68:714–721PubMedCrossRefGoogle Scholar
  234. Weiss, S. J., Peppin, G., Ortiz, X., Ragsdale, C., and Test, S. T., 1985, Oxidative autoactivation of latent collagenase by human neutrophils, Science 227:747–749PubMedCrossRefGoogle Scholar
  235. Weitzman, S., Weitberg, A. B., Clark, E. P., and Stossel, T. P., 1985, Phagocytes as carcinogens: Malignant transformation produced by human neutrophils, Science 227:1231–1233PubMedCrossRefGoogle Scholar
  236. Winterboum, C. C., Garcia, R. C., and Segal, A. W., 1985, Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride, Biochem. J. 228:583–592Google Scholar
  237. Wong, P. S., and Travis, J., 1980, Isolation and properties of oxidized alpha-l-proteinase inhibitor from human rheumatoid synovial fluid, Biochem. Biophys. Res. Commun. 96:1449–1454PubMedCrossRefGoogle Scholar
  238. Wright, C. D., and Nelson, R. D., 1988, Candidacidal activity of myeloperoxidase: Characterization of myeloperoxidase-yeast complex formation, Biochem. Biophys. Res. Commun. 154:809–817PubMedCrossRefGoogle Scholar
  239. Wright, C. D., Bowie, J. U., Gray, G. R., and Nelson, R. D., 1983, Candidacidal activity of myeloperoxidase: Mechanisms of inhibitory influence of soluble cell wall mannan, Infect. Immun. 42:76–80PubMedGoogle Scholar
  240. Wright, C. D., Bowie, J. U., and Nelson, R. D., 1984a, Influence of yeast mannan on release of myeloperoxidase by human neutrophils: Determination of structural features required for formation of myeloperoxidase-mannan-neutrophil complex, Infect. Immun. 43:467–471Google Scholar
  241. Wright, C. D., Herron, M. J., Gray, G. R., Holmes, B., and Nelson, R. D., 1984b, Influence of yeast mannan on human neutrophil function: inhibition of release of myeloperoxidase related to carbohydrate-binding property of the enzyme, Infect. Immun. 43:467–471Google Scholar
  242. Wright, J., Yoshimoto, S., Offner, G. D., Blanchard, R. A., Troxler, R., and Tauber, A. I., 1987, Structural characterization of the isoenzymatic forms of human myeloperoxidase, Biochim. Biophys. Acta 915:68–76PubMedCrossRefGoogle Scholar
  243. Wymann, M. P., von Tschamer, V., Deranleau, D. A., and Baggiolini, M., 1987, Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst, Anal. Biochem. 165: 371–378PubMedCrossRefGoogle Scholar
  244. Yamada, M., 1982, Myeloperoxidase precursors in human myeloid leukemia HL-60 cells, J. Biol. Chem. 257:5980–5982PubMedGoogle Scholar
  245. Yamada, M., and Kurahashi, K., 1984, Regulation of myeloperoxidase gene expression during differentiation of human myeloid leukemia HL-60 cells, J. Biol. Chem. 259:3021–3025PubMedGoogle Scholar
  246. Yamada, M., Mori, M., and Sugimura, T., 1981a, Myeloperoxidases in cultured human promyelocytic leukemia cell line HL-60, Biochem. Biophys. Res. Commun. 98:219–226CrossRefGoogle Scholar
  247. Yamada, M., Mori, M., and Sugimura, T., 1981b, Purification and characterization of small molecular weight myeloperoxidase from human promyelocytic leukemia HL-60 cells, Biochemistry 20:766–771CrossRefGoogle Scholar
  248. Yamada, M., Hur, S. J., Hasinaka, K., Tsuneoka, K., Saeki, T., Nishio, C., Sakiyama, F., and Tsunasawa, S., 1987, Isolation and characterization of cDNA coding for human myeloperoxidase, Arch. Biochem. Bi-ophys. 255:147–155CrossRefGoogle Scholar
  249. Zgliczynski, J. M., 1980, Characteristics of myeloperoxidase from neutrophils and other peroxidases from different cell types, in The Reticuloendothelial System, Vol. 2. Biochemistry and Metabolism (A. J. Sbarra and R. R. Strauss, eds.), pp. 255–278, Plenum Press, New YorkGoogle Scholar
  250. Zgliczynski, J. M., Stelmaszynska, T., Ostrowski, W., Naskalsi, J., and Sznaid, J., 1968, Myeloperoxidase of human leukemic leukocytes. Oxidation of amino acids in the presence of hydrogen peroxide, Eur. J. Biochem. 4:540–547PubMedCrossRefGoogle Scholar
  251. Zgliczynski, J. M., Selvaraj, R., Paul, B. B., Stelmaszynska, T., Poskitt, K., and Sbarra, A. J., 1977, Chlorination by myeloperoxidase-H2O2-Cl-antimicrobial system at acid and neutral pH, Proc. Soc. Exp. Biol. Med. 154:418–422PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Andreas Tobler
    • 1
  • H. Phillip Koeffler
    • 2
  1. 1.Central Hematology LaboratoryUniversity of BerneInselspitalSwitzerland
  2. 2.Division of Hematology/OncologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations