Growth Inhibition of Multidrug-Resistant Cells by Monoclonal Antibodies against P-Glycoprotein

  • Hirofumi Hamada
  • Takashi Tsuruo


When cell lines are made resistant to naturally occurring anticancer agents such as Vinca alkaloids or anthracyclines, they usually show cross-resistance to certain other drugs to which they have not been previously exposed (for reviews, see Chapters 1 and 2). The classes of agents to which this cross-resistance extends are diverse, but the drugs are all complex high-molecular-weight natural products. The basis for this multidrug-resistant (MDR) phenotype appears to be a membrane change that results in decreased uptake of these drugs (Riordan and Ling, 1985; Skovsgaard, 1978; Inaba et al., 1979). All of these agents presumably utilize a similar transport system, despite the wide disparity in their structures.


P388 Leukemia Phosphoamino Acid Human Epidermoid Carcinoma A431 Cell Phosphoamino Acid Analysis Phorbol Diester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, J., and Rovera, G., 1980, The effect of tumor-promoting phorbol diester on terminal differentiation of cells in culture, Mol. Cell. Biochem. 31:165–175.Google Scholar
  2. Ashendel, C. L., 1985, The phorbol ester receptor: A phospholipid-regulated protein kinase, Biochim. Biophys. Acta 822:219–242.PubMedCrossRefGoogle Scholar
  3. Beck, W. T., 1983, Vinca alkaloid-resistant phenotype in cultured human leukemic lymphoblasts, Cancer Treat. Rep. 67:875–882.PubMedGoogle Scholar
  4. Beck, W. T., Mueller, T. J., and Tanzer, L. R., 1979, Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts, Cancer Res. 39:2070–2076.PubMedGoogle Scholar
  5. Beck, W. T., Cirtain, M. C., Ashmun, R. A., and Mirro, J., 1986, Differentiation and the multiple drug resistance phenotype in human leukemic cells, Cancer Res. 46:4571–4575.PubMedGoogle Scholar
  6. Bell, D. R., Gerlach, J. H., Kartner, N., Buick, R. N., and Ling, V., 1985, Detection of P-glycoprotein in ovarian cancer: A molecular marker associated with multidrug resistance, J. Clin. Oncol. 3:311–315.PubMedGoogle Scholar
  7. Biedler, J. L., and Peterson, R. H. F., 1981, Altered plasma membrane glycoconjugates of Chinese hamster cells with acquired resistance to actinomycin D, daunomycin, and vincristine, Bristol Myers Cancer Symp. 2:453–482.Google Scholar
  8. Biedler, J. L., Meyers, M. B., and Spengler, B. A., 1985, Multiple pathways to multidrug resistance, Proc. Am. Assoc. Cancer Res. 26:388–389.Google Scholar
  9. Brox, A., Price, G., and Sullivan, A. K., 1985, An antigen related to the phenotype of multidrug resistance can be induced in vivo and used as a target for immunotherapy of rat leukemia, Leuk. Res. 9:987–992.PubMedCrossRefGoogle Scholar
  10. Carlsen, S. A., Till, J. E., and Ling, V., 1977, Modulation of drug permeability in Chinese hamster ovary cells: Possible role for phosphorylation of surface glycoproteins, Biochim. Biophys. Acta 467:238–250.PubMedCrossRefGoogle Scholar
  11. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7851.PubMedGoogle Scholar
  12. Center, M. S., 1985, Mechanisms regulating cell resistance to Adriamycin: Evidence that drug accumulation in resistant cells is modulated by phosphorylation of a plasma membrane glycoprotein, Biochem. Pharmacol. 34:1471–1476.PubMedCrossRefGoogle Scholar
  13. Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K., 1977, Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, J. Biol. Chem. 252:1102–1106.PubMedGoogle Scholar
  14. Cooper, R. A., Brunwald, A. D., and Kuo, A. L., 1982, Phorbol ester induction of leukemic cell differentiation is a membrane-mediated process, Proc. Natl. Acad. Sci. USA 79:2865–2869.PubMedCrossRefGoogle Scholar
  15. Cornwell, M. M., Gottesman, M. M., and Pastan, I., 1986a, Increased vinblastine binding to membrane vesicles from multidrug resistant KB cells, J. Biol. Chem. 261:7921–7928.Google Scholar
  16. Cornwell, M. M., Safa, A. R., Felsted, R. L., Gottesman, M. M., and Pastan, I., 1986b, Membrane vesicles from multidrug-resistant cancer cells contain a 150- to 170-kDa protein detected by photoaffinity labeling, Proc. Natl. Acad Sci. USA 83:847–3850.CrossRefGoogle Scholar
  17. Cornwell, M. M., Pastan, I., and Gottesman, M. M., 1987, Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein, J. Biol. Chem. 262:2166–2170.PubMedGoogle Scholar
  18. Dalton, W. S., Durie, B. G. M., Alberts, D. S., Gerlach, J. H., and Cress, A. E., 1986, Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein, Cancer Res. 46:5125–5130.PubMedGoogle Scholar
  19. Danks, M. K., Metzger, D. W., Ashmun, R. A., and Beck, W. T., 1985, Monoclonal antibodies to glycoproteins of vinca alkaloid-resistant human leukemic cells, Cancer Res. 45:3222–3224.Google Scholar
  20. Debenham, P. G., Kartner, N. S., Siminovitch, L., Riordan, J. R., and Ling, V, 1982, DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression, Mol. Cell. Biol. 2:881–889.PubMedGoogle Scholar
  21. Diamond, L., O’Brien, T., and Rovera, G., 1977, Inhibition of adipose conversion of 3T3 fibroblasts by tumor promoters, Nature 269:247–249.PubMedCrossRefGoogle Scholar
  22. Eva, A., Robbins, K. C., Andersen, P. R., Srinivasan, A., Tronick, S. R., Reddy, E., Ellmore, N. W., Galen, A. T., Lautenberger, J. A., Papas, T. S., Westin, E. H., Wong-Staal, F., Gallo, R. C., and Aaronson, S. A., 1982, Cellular genes analogous to retroviral one genes are transcribed in human tumor cells, Nature 295:116–119.PubMedCrossRefGoogle Scholar
  23. Fabricant, R. N., DeLarco, J. E., and Tadaro, G. J., 1977, Nerve growth factor receptors on human melanoma cells in culture, Proc. Natl. Acad. Sci. USA 74:565–569.PubMedCrossRefGoogle Scholar
  24. Fine, R. L., Patel, J., Hamilton, T. C., Cowan, K., Curt, G. A., Friedman, M. A., and Chabner, A. B., 1986, Activation of protein kinase C (PKC) increases vincristine (VC) efflux and resistance in drug-sensitive MCF-7 cells, Proc. Am. Assoc. Cancer Res. 27:1073.Google Scholar
  25. FitzGerald, D. J., Willingham, M. C., Cardarelli, C. O., Hamada, H., Tsuruo, T., Gottesman, M. M., and Pastan, I., 1987, A monoclonal antibody-pseudomonas-toxin conjugate that specifically kills multidrug-resistant cells, Proc. Natl. Acad. Sci. USA 84:4288–4292.PubMedCrossRefGoogle Scholar
  26. Fojo, A. T., Whang-Peng, J., Gottesman, M. M., and Pastan, I., 1985, Amplification of DNA sequences in human multidrug-resistant KB carcinoma cells, Proc. Natl. Acad. Sci. USA 82:7661–7665.PubMedCrossRefGoogle Scholar
  27. Galfrè, G., and Milstein, C., 1981, Preparation of monoclonal antibodies: Strategies and procedures, Methods Enzymol. 73:3–46.PubMedCrossRefGoogle Scholar
  28. Ganapathi, R., and Grabowski, O., 1983, Enhancement of sensitivity to Adriamycin in resistant P388 leukemia by the calmodulin inhibitor trifluoperazine, Cancer Res. 43:3696–3699.PubMedGoogle Scholar
  29. Garman, D., and Center, M. S., 1982, Alterations in cell surface membranes in Chinese hamster lung cells resistant to Adriamycin, Biochem. Biophys. Res. Commun. 105:157–163.PubMedCrossRefGoogle Scholar
  30. Garman, D., Alberts, A. L., and Center, M. S., 1983, Identification and characterization of a plasma membrane phosphoprotein which is present in Chinese hamster lung cells resistant to Adriamycin, Biochem. Pharmacol. 32:3633–3637.PubMedCrossRefGoogle Scholar
  31. Hamada, H., and Tsuruo, T., 1986a, Monoclonal antibodies against multidrug resistant cell lines, Proc. Am. Assoc. Cancer Res. 27:390.Google Scholar
  32. Hamada, H., and Tsuruo, T., 1986b, Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies, Proc. Natl. Acad. Sci. USA 83:7785–7789.CrossRefGoogle Scholar
  33. Hamada, H., and Tsuruo, T., 1987, Detection of membrane antigens by a covalent cross-linking method with monoclonal antibodies, Anal. Biochem. 160:483–488.PubMedCrossRefGoogle Scholar
  34. Hamilton, T. C., Young, R. C., and Ozols, R. F., 1984, Experimental model systems of ovarian cancer: Applications to the design and evaluation of new treatment approaches, Semin. Oncol. 11:285–298.PubMedGoogle Scholar
  35. Heigler, H., Ash, J. F., Singer, S. J., and Cohen, S., 1978, Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431, Proc. Natl. Acad. Sci. USA 75:3317–3321.CrossRefGoogle Scholar
  36. Hunter, T., and Cooper, J. A., 1981, Epidermal growth factor induces rapid tyrosine phosphorylation of proteins in A431 human tumor cells, Cell 24:741–752.PubMedCrossRefGoogle Scholar
  37. Inaba, M., Kobayashi, H., Sakurai, Y., and Johnson, R. K., 1979, Active efflux of daunorubicin, and Adriamycin in sensitive and resistant sublines of P388 leukemia, Cancer Res. 39:2200–2203.PubMedGoogle Scholar
  38. Iwashita, S., and Fox, C. F., 1984, Epidermal growth factor and potent phorbol tumor promoters induce epidermal growth factor receptor phosphorylation in a similar but distinctively different manner in human epidermoid carcinoma A431 cells, J. Biol. Chem. 259:2559–2567.PubMedGoogle Scholar
  39. Jacobs, S., and Cuatrecasas, P., 1986, Phosphorylation of receptors for insulin and insulin-like growth factor. I. Effects of hormones and phorbol esters, J. Biol. Chem. 261:934–939.PubMedGoogle Scholar
  40. Juliano, R. L., and Ling, V., 1976, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants, Biochim. Biophys. Acta 455:152–162.PubMedCrossRefGoogle Scholar
  41. Kartner, N., Riordan, J. R., and Ling, V., 1983, Cell surface P-glycoprotein associated with multidrug-resistance in mammalian cell lines, Science 221:1285–1288.PubMedCrossRefGoogle Scholar
  42. Kartner, N., Everden-Porelle, D., Bradley, G., and Ling, V., 1985, Detection of P-glycoprotein in multidrug-resistant cell lines by monoclonal antibodies, Nature 316:820–823.PubMedCrossRefGoogle Scholar
  43. Kennet, R. H., 1980, in: Monoclonal Antibodies (R. H. Kennet, T. J. McKern, and K. B. Bechtol, eds.), Plenum Press, New York, pp. 376–377.CrossRefGoogle Scholar
  44. Kraft, A. S., and Andaerson, W. B., 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature 301:621–624.PubMedCrossRefGoogle Scholar
  45. Lathan, B., Edwards, D. P., Dressler, L. G., Von Hoff, D. D., and McGuire, W. L., 1985, Immunological detection of Chinese hamster ovary cells expressing a multidrug resistance phenotype, Cancer Res. 45:5064–5069.PubMedGoogle Scholar
  46. Leach, K. L., James, M. L., and Blumberg, P. M., 1983, Characterization of a specific phorbol ester aporeceptor in mouse brain cytosol, Proc. Natl. Acad. Sci. USA 80:4208–4212.PubMedCrossRefGoogle Scholar
  47. Ling, V., 1982, Genetic basis of drug resistance in mammalian cells, in: Drug and Hormone Resistance in Neoplasia (N. Bruchovsky and J. H. Goldie, eds.), CRC Press, Boca Raton, Fla., pp. 1–19.Google Scholar
  48. Marsh, W., and Center, M. S., 1985a, In vitro phosphorylation and the identification of multiple protein changes in membranes of Chinese hamster lung cells resistant to Adriamycin, Biochem. Pharmacol. 34:4180–4184.CrossRefGoogle Scholar
  49. Marsh, W., and Center, M. S., 1985b, Evidence for the involvement of two distinct membrane proteins in Adriamycin resistance in Chinese hamster lung cells, Cancer Res. 45:6088–6092.Google Scholar
  50. Marsh, W., and Center, M. S., 1986, Dimethylsulfoxide, retinoic acid and 12-O-tetradecanoylphorbol-13-acetate induce a selective decrease in the phosphorylation of P150, a surface membrane phosphoprotein of HL60 cells resistant to adriamycin, Biochem. Biophys. Res. Commun. 138:9–16.PubMedCrossRefGoogle Scholar
  51. Meyers, M. B., Spengler, B. A., and Biedler, J. L., 1985, Epidermal growth factor binding is increased in multidrug-resistant cells, Proc. Am. Assoc. Cancer Res. 26:1328.Google Scholar
  52. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA 80:36–39.PubMedCrossRefGoogle Scholar
  53. Nishizuka, Y., 1983, Phospholipid degradation and signal translation for protein phosphorylation, Trends Biochem. Sci. 8:13–16.CrossRefGoogle Scholar
  54. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature 308:693–698.PubMedCrossRefGoogle Scholar
  55. O’Hara, C. J., 1984, Characterization of monoclonal antibodies demonstrating specificity for drug-resistant tumor cells, Diss. Abstr. Int. 45:433-B.Google Scholar
  56. O’Hara, C. J., and Price, G. B., 1982, A monoclonal antibody demonstrating specificity for drug-resistant cells, Immunol. Lett. 5:15–18.PubMedCrossRefGoogle Scholar
  57. O’Hara, C. J., Grober, J., and Price, G. B., 1984, Cells resistant to cytotoxic drugs are recognized by monoclonal antibody, J. Clin. Immunol. 4:403–411.PubMedCrossRefGoogle Scholar
  58. Riordan, J. R., and Ling, V., 1985, Genetic and biochemical characterization of multidrug resistance, Pharmacol. Ther. 28:51–75.PubMedCrossRefGoogle Scholar
  59. Rogan, A. M., Hamilton, T. C., Young, R. C., Klecker, R. W., Jr., and Ozols, R. F., 1984, Reversal of Adriamycin resistance by verapamil in human ovarian cancer, Science 224:994–996.PubMedCrossRefGoogle Scholar
  60. Scheper, R. J., Bulte, J. W. M., Brakkee, J. G. P., Quak, J. J., Van der Schoot, E., Balm, A. J. M., Meuer, C. J. L. M., Broxterman, H. J., Kuiper, C. M., Lankelma, J., and Pinedo, H. M., 1988, Monoclonal antibody JSB-1 detects a highly conserved epitope on the P-glycoprotein associated with multi-drug-resistance, Int. J. Cancer 42:389–394.PubMedCrossRefGoogle Scholar
  61. Sharkey, N. A., Leach, N., Karen, L., and Blumberg, P. M., 1984, Competitive inhibition by diacylglycerol of specific phorbol ester binding, Proc. Natl. Acad. Sci. USA 81:607–611.PubMedCrossRefGoogle Scholar
  62. Shen, D., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S., Pastan, I., and Gottesman, M. M., 1986, Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, Adriamycin, or vinblastine show changes in expression of specific proteins, J. Biol. Chem. 261:7762–7770.PubMedGoogle Scholar
  63. Skovsgaard, T., 1978, Mechanism of cross-resistance between vincristine and daunorubicin in Ehrlich ascites tumor cells, Cancer Res. 38:4722–4727.PubMedGoogle Scholar
  64. Slater, L. M., Murray, S. L., and Wetzel, M. W., 1982, Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma, J. Clin. Invest. 70:1131–1134.PubMedCrossRefGoogle Scholar
  65. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y., 1981, Overcoming of vincristine resistance in P388 leukemia, in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil, Cancer Res. 41:1967–1972.PubMedGoogle Scholar
  66. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y, 1982, Increased accumulation of vincristine and Adriamycin in drug resistant tumor cells following incubation with calcium antagonists and calmodulin inhibitors, Cancer Res. 42:4730–4733.PubMedGoogle Scholar
  67. Tsuruo, T., Iida, H., Nojiri, M., Tsukagoshi, S., and Sakurai, Y, 1983a, Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers, Cancer Res. 43:2905–2910.Google Scholar
  68. Tsuruo, T., Iida, H., Ohkouchi, E., Tsukagoshi, S., and Sakurai, Y, 1983b, Establishment of properties of vincristine-resistant human myelogenous leukemia K562, Jpn. J. Cancer Res. 74:751–758.Google Scholar
  69. Tsuruo, T, Iida-Saito, H., Kawabata, H., Oh-hara, T, Hamada, H., and Utakoji, T., 1986, Characteristics of resistance to Adriamycin in human myelogenous leukemia K562 resistant to Adriamycin and the isolated clones, Jpn. J. Cancer Res. 77:682–692.PubMedGoogle Scholar
  70. Tsuruo, T, Hamada, H., Sato, S., and Heike, Y, 1989, Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies, Jpn. J. Cancer Res. 80:627–631.PubMedCrossRefGoogle Scholar
  71. Willingham, M. C., Richert, N. D., Cornwell, M. M., Tsuruo, T., Hamada, H., Gottesman, M. M., and Pastan, I., 1987, Immunocytochemical localization of P170 at the plasma membrane of multidrug-resistant human cells, J. Histochem. Cytochem. 35:1451–1456.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hirofumi Hamada
    • 1
    • 2
  • Takashi Tsuruo
    • 1
    • 2
  1. 1.Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
  2. 2.Institute of Applied MicrobiologyUniversity of TokyoTokyoJapan

Personalised recommendations