A Physical Model of Prebreakdown in the Hollow Cathode Pseudospark Discharge Based on Numerical Simulations

  • Karl Mittag
Part of the NATO ASI Series book series (NSSB, volume 219)


The pseudospark discharge is a special form of hollow cathode discharge at pressures around 30 Pa, voltages between 1 and 400 kV, and typically 1 to 5 cm gap between anode and cathode. It promises applications in fast high power switches, in well pinched high intensity pulsed electron beams, as well as in point-like X-ray sources1 2 3.


Space Charge Drift Velocity Electron Flux Hollow Cathode Electron Drift Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Frank, J. Christiansen, O. Almen, E. Boggasch, A. Görtler, W. Hartmann, C. Kozlik, A. Tinschmann, G. F. Kirkman, A 40 kV/20 kA Pseudospark Switch for Laser Applications, Proc. of the Int. Soc. for Optical Engineering, Innovative Science and Technology Symposium, Los Angeles, 173 (1988)Google Scholar
  2. 2.
    W. Bauer, H. Ehrler, A. Rogner, C. Schultheiss, Review of Effects of the High Power Pseudospark, Proc. of the IX Int. Conf. on Gas Discharges and their Applications, Venice, Italy, 677 (1988)Google Scholar
  3. 3.
    P. Billaut, H. Riege, M. van Gulik, E. Boggasch, K. Frank, R. Seeböck, Pseudospark Switches, CERN-Report 87–13 (1987)Google Scholar
  4. 4.
    K. Mittag, Numerical Simulation of Prebreakdown in Pseudospark Discharges with a Multi-Fluid Model, Proc. of the IX Int. Conf. on Gas Discharges and their Applications, Venice, Italy, 673 (1988)Google Scholar
  5. 5.
    K. Mittag, W.Niessen, Numerical Simulation of a Pseudospark Gas Discharge, Kerntechnik 52, 188 (1988)Google Scholar
  6. 6.
    A. J. Davies, C. J. Evans, P. M. Woodison, Simulation of the Growth of Axially Symmetric Discharges Between Plane Parallel Electrodes, Computer Physics Communications 14, 287 (1978)CrossRefGoogle Scholar
  7. 7.
    A. J. Davies, Discharge Simulation, IEEE Proceedings, Vol. 133. Pt. A, No. 4, 217 (1986)Google Scholar
  8. 8.
    E. Halter, Die Berechnung elektrostatischer Felder in Pulsleitungsanlagen, Kernforschungszentrum Karlsruhe, KfK-Report 4072 (1986Google Scholar
  9. 9.
    W. Niessen, Monte-Carlo-Simulation of the Prebreakdown Phase for a high E/N-Discharge, Proc. of the IX Int. Conf. on Gas Discharges and their Applications, Venice, Italy, 670 (1988)Google Scholar
  10. 10.
    Y. Kaufman, P.Choi, private communication (1989)Google Scholar
  11. 11.
    P. Choi, H. Chuaqui, J. Lunney, R. Reichle, A. J. Davies, K. Mittag, Plasma Formation in a Pseudospark Discharge, IEEE Transaction for Plasma Science, to be publishedGoogle Scholar
  12. 12.
    D. Dietrich, C. Schultheiss, K. Mittag, to be publishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Karl Mittag
    • 1
  1. 1.Institut für Datenverarbeitung in der TechnikKernforschungszentrum Karlsruhe GmbHKarlsruheFederal Republic of Germany

Personalised recommendations