Advertisement

From Lattice Gauge Theory Towards Gravity

  • Sergio Caracciolo
  • Andrea Pelissetto
Part of the NATO ASI Series book series (NSSB, volume 224)

Abstract

Our aim is to report the status of a research on models for discretized quantum gravity, inspired by lattice gauge theory.

Keywords

Gauge Theory Quantum Gravity Wilson Loop Lattice Gauge Theory Dual Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Ambjorn remembered to us in this Workshop that the absence of convergence in the sum over all topologies in string theory was already known to people working on random surfaces regularized by triangulation. See his contribution to this volume.Google Scholar
  2. [2]
    D. Gross and V. Periwal, Phys. Rev. Lett. 61: 2105 (1988).MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, in “General Relativity. An Einstein Centenary Survey”, S. W. Hawking and W. Israel eds., Cambridge University Press, Cambridge (1979).Google Scholar
  4. [4]
    T. Regge, Nuovo Cimento 19: 558 (1961).MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Ponzano and T. Regge, in “Spectroscopic and Group Theoretical Methods in Physics”, F. Bloch, S. G. Cohen, A. De-Shalit, S. Sambursky and I. Talmi eds., Wiley, New York (1968).Google Scholar
  6. [6]
    J. Fröhlich, Regge Calculus and Discretized Functional Integrals, I.H.E.S. preprint, unpublished (1981).Google Scholar
  7. [7]
    J. Cheeger, W. Müller and R. Schrader, in “Unified Theories of Elementary Particles”, P. Breitenlhoner and H. P. Dürr eds., Springer Verlag, Berlin, Heidelberg, New York (1982) and Comm. Math. Phys. 92: 405 (1984).Google Scholar
  8. [8]
    M. Rŏcek and R. N. Williams, Phys. Lett. 104B: 31 (1981) and Z. Phys. C21: 371 (1984).MathSciNetGoogle Scholar
  9. [9]
    R. Friedberg and T. D. Lee, Nucl. Phys. B242: 145 (1984).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    G. Feinberg, R. Friedberg, T. D. Lee and H. C. Ren, Nucl. Phys. B245: 342 (1984).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    T. D. Lee, Proceedings of the 1983 Erice Summer School. A. Zichichi ed., Plenum Press, New York and London, and “Old and New Problems in Fundamental Physics”, Proceedings of a Meeting in Honour of G. C. Wick, Scuola Normale Superiore, Pisa (1986).Google Scholar
  12. [12]
    H. W. Hamber and R. M. Williams, Nucl. Phys. B248: 392 (1984); B267: 482 (1986) and B269: 712 (1986); Phys. Lett. 157B: 368 (1985).MathSciNetGoogle Scholar
  13. [13]
    H. W. Hamber, in “Critical Phenomena, Random Systems, Gauge Theories”, 1984 Les Houches Summer Scool, XLIII Session, K. Osterwalder and R. Stora eds., Elsevier Science Publishers B. V., Amsterdam (1986). See also one of his contributions to this volume.Google Scholar
  14. [14]
    M. Caselle, A. D’Adda and L. Magnea, Regge Calculus as a Local Theory of the Poincarè Group, preprint DFTT 18 /89, (1989).Google Scholar
  15. [15]
    R. Utiyama, Phys. Rev. 101: 1597 (1956); T. W. Kibble, J. Math. Phys. 2: 212 (1960); A. Trautman, Bull. Acad. Pol. Sc., Ser. Sci. Math. Astron. Phys. 20: 185, 503 and 895 (1972); Y. Ne’eman and T. Regge, Phys. Lett. B74: 54 (1978) and Riv. Nuovo Cimento 1: 1 (1978); M. Kaku, P. K. Townsend and P. van Nieuwenhuizen, Phys. Rev. Lett. 39: 1109 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    A. Ashtekar, in “Quantum Concepts in Space and Time”, C. J. Isham and R. Penrose eds., Oxford University Press, Oxford (1986), pp. 302–317; Phys. Rev. Lett. 57: 2244 (1986) and Phys. Rev. D36: 1587 (1987).Google Scholar
  17. [17]
    P. Renteln and L. Smolin, Class. Quantum Grav. 6: 275 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    E. Witten, Nucl. Phys. B311: 46 (1988/89).Google Scholar
  19. [19]
    K. G. Wilson, Phys. Rev. D10: 2445 (1974).ADSGoogle Scholar
  20. [20]
    S. W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38: 739 (1977); and 38: 1376 (1977).MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    L. Smolin, Nucl. Phys. B148: 333 (1979).MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A. Das, M. Kaku and P. K. Townsend, Phys. Lett. 81B: 11 (1979); C. Mannion and J. G. Taylor, Phys. Lett. 100B: 261 (1981); P. Menotti and A. Pelissetto, Ann. Phys. (N.Y.) 170: 287 (1986); M. Caselle, A. D’Adda and L. Magnea, Phys. Lett. 192B: 406 and 411 (1987).Google Scholar
  23. [23]
    P. Menotti and A. Pelissetto, Phys. Rev. D35: 1194 (1987).MathSciNetADSGoogle Scholar
  24. [24]
    S. Caracciolo, P. Menotti and A. Pelissetto, Nucl. Phys. B296: 868 (1988).MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    B. A. Berg, in “XXVII International Universitätswochen für Kernphysik”, Schladming (1988).Google Scholar
  26. [26]
    P. Menotti, plenary talk given at the International Workshop “Lattice ′89”, Isola di Capri, to be published in Nucl. Phys. ( Proc. Suppl.) B: (1990).Google Scholar
  27. [27]
    S. Caracciolo and A. Pelissetto, Phys. Lett. 193B: 237 (1987).Google Scholar
  28. [28]
    S. W. Hawking, in “General Relativity. An Einstein Centenary Survey”, S. W. Hawking and W. Israel eds., Cambridge University Press, Cambridge (1979).Google Scholar
  29. [29]
    B. A. Berg, Phys. Rev. Lett. 55: 904 (1985) and Phys. Lett. 176B: 39 (1986).MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    S. Caracciolo and A. Pelissetto, Nucl. Phys. B299: 693 (1988).MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    A. Phillips, Ann. of Phys. (N.Y.) 161: 399 (1985).ADSMATHCrossRefGoogle Scholar
  32. [32]
    J. A. Wheeler, in “Relativity, Groups and Topology”, B. S. and C. M. DeWitt eds., Gordon and Breach, New York (1963).Google Scholar
  33. [33]
    C. W. Misner, K. S. Thome and J. A. Wheeler, “Gravitation”, W. H. Freeman and Company, San Francisco (1973).Google Scholar
  34. [34]
    S. Caracciolo and A. Pelissetto, in “Lattice ′87”, Proceedings of the International Symposium on Field Theory on the Lattice, Seillac, France, September 28-October 2, 1987, A. Billoire, R. Lacaze, A. Morel, O. Napoly and J. Zinn-Justin eds., Nuclear Physics B (Proc. Suppl.) 4: 78 (1988).Google Scholar
  35. [35]
    B. De Witt, Phys. Rev. 160: 1113 (1967) and in in “General Relativity. An Einstein Centenary Survey”, S. W. Hawking and W. Israel eds., Cambridge University Press, Cambridge (1979). H. Leutwyler, Phys. Rev. 134: 1155B (1964); E. Fradkin and G. Vilkovisky, Phys. Rev. D8: 424 (1973); L. Faddeev and V. Popov, Sov. Phys. Usp. 16: 777 (1974); V. De Alfaro, S. Fubini and G. Furlan, Nuovo Cimento 57B: 227 (1980) and 76A: 365 (1983); K. Fujikawa, Nucl. Phys. B226: 437 (1983).ADSCrossRefGoogle Scholar
  36. [36]
    A. Jevicki and M. Ninomiya, Phys. Rev. D33: 1634 (1986).MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    P. Menotti and A. Pelissetto, Nucl. Phys. B288: 813 (1987).MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    S. Caracciolo and A. Pelissetto, Phys. Lett. 207B: 468 (1988).Google Scholar
  39. [39]
    A. A. Migdal, in “Lattice ′88”, Proceedings of the 1988 Symposium on Lattice Field Theory, Fermi National Accelerator Laboratory, Batavia, IL, USA, 22–25 September 1988, A. S. Kronfeld and P..B. Mackenzie eds., Nuclear Physics B (Proc. Suppl.) 9: 625 (1989).Google Scholar
  40. [40]
    K. Osterwalder and E. Seiler, Ann. of Phys. (N.Y.) 110: 440 (1978); E. Seiler, “Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics”, Lecture Notes in Physics 159, Springer-Verlag, Berlin (1982).MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S. Caracciolo and A. Pelissetto, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Sergio Caracciolo
    • 1
  • Andrea Pelissetto
    • 1
  1. 1.Scuola Normale Superiore and INFN — Sezione di Pisa Piazza dei CavalieriPisaItaly

Personalised recommendations