An Approach to Quantum Field Theory Through Stochastic Equations

  • Zbigniew Haba
Part of the NATO ASI Series book series (NSSB, volume 224)


We can view the method of stochastic equations as a problem of finding a transformation expressing a non-Gaussian field by a Gaussian one. We work in the Euclidean formulation of quantum field theory with the well-defined functional integral.


Gauge Group Conformal Field Theory Stochastic Equation Biharmonic Function Gaussian Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, 1981Google Scholar
  2. [2]
    H. Nicola, Phys.Lett. 117B 408 (1982), E. Gozzi, Phys.Rev. D28, 1922 (1985)Google Scholar
  3. [3]
    Z. Haba, Non-compact WZW models as (QCD)2 at infinite coupling, BiBoS preprint No. 382, 1989Google Scholar
  4. [4] Z. Haba, Phys.Rev.D33, 2428(1986)
    Lecture Notes in Phys. No.262, Springer, 1986Google Scholar
  5. [5]
    Z. Haba, Phys.Rev. D35, 1412(1987) Phys.Rev. D38, 647 (1988)MathSciNetADSGoogle Scholar
  6. [6]
    Z. Haba, Int. Journ. Mod. Phys. A4, 467(1989) Mod.Phys.Lett. A4, 1431 (1989)Google Scholar
  7. [7]
    V.S. Dotsenko, Lectures on conformai field theory, preprint RIMS-559, 1986Google Scholar
  8. [8]
    P. Christe and R. Flume, Nucl. Phys. B282, 308(1978)Google Scholar
  9. [9]
    F. Gürsey and H.C. Tze, Ann. Phys. 128, 29 (1980)Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Zbigniew Haba
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations