Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 220))

  • 392 Accesses

Abstract

Many technologies rely on the conduction/insulation properties1 of gaseous matter for their successful operation.2 Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa.2 Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: (i) spark gap closing, (ii) self-sustained diffuse discharge closing, and (iii) externally-sustained diffuse discharge opening. The desirable properties and characteristics of these three types of switches are listed in Table 1, along with the required properties of the gaseous medium.

Table 1 Desirable Rnaracrerisfics of and Gas Pliysical Propertiesi/Processes for Lllree Types of Gas Switches

Research sponsored by the Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-ACO5-84OR214OO with Martin Marietta Energy Systems, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crudely speaking, a gas is a good conductor when the free electrons present in it remain free and have large drift velocities w, and it is a good insulator when w is small and virtually all the electrons present are attached forming negative ions. Thus, switching or modulating the conduction/insulation properties of gaseous matter largely involves switching or modulating the relative numbers of free and attached electrons.

    Google Scholar 

  2. See, for example, articles in: (a) L. G. Christophorou and M. O. Pace (Eds), Gaseous Dielectrics IV, Pergamon (New York, 1984), Chapter 5; (b) L. G. Christophorou and D. W. Bouldin (Eds), Gaseous Dielectrics V, Pergamon (New York, 1987), Chapter 7; (c) A. Guenther, M. Kristiansen, and T. Martin (Eds), Opening Switches, Plenum (New York, 1987); (d) P. J. Turchi and B. H. Bernstein (Eds), Proceedings of the 6th IEEE Pulsed Power Conference, Arlington, Virginia, IEEE Catalog Number 87CH2522–1, (1988).

    Google Scholar 

  3. See, for example, L. G. Christophorou, Atomic and Molecular Radiation Physics, Wiley-Interscience, New York, 1971.

    Google Scholar 

  4. H. S. W. Massey, Negative Ions, Cambridge University Press, London, 1976

    Google Scholar 

  5. B. M. Smirnov, Negative Ions, McGraw-Hill, New York, 1982.

    Google Scholar 

  6. L. G. Christophorou (Ed), Electron-Molecule Interactions and Their Applications, Academic Press, New York, 1984, Volumes 1 and 2

    Google Scholar 

  7. L. G. Christophrou, Plasma Physics 27, 237 (1987).

    Google Scholar 

  8. S. M. Spyrou, I. Sauers, and L. G. Christophorou, J. Chem. Phys. 78, 7200 (1983)

    Article  ADS  Google Scholar 

  9. S. R. Hunter and L. G. Christophorou, J. Chem. Phys. 80, 6150 (1984)

    Article  ADS  Google Scholar 

  10. P. G. Datskos and L. G. Christophorou, J. Chem. Phys. 86, 1982 (1987)

    Article  ADS  Google Scholar 

  11. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Chem. Phys. 90, 4879 (1989)

    Article  ADS  Google Scholar 

  12. L. E. Kline, D. K. Davies, C. L. Chen, and P. J. Chantry, J. Appl. Phys. 50, 6789 (1979)

    Article  ADS  Google Scholar 

  13. A. Chutjian and S. H. Alajajian, Phys. Rev. A 31, 2885 (1985)

    Article  ADS  Google Scholar 

  14. L. G. Christophorou, S. R. Hunter, J. G. Carter, and R. A. Mathis, Appl. Phys. Lett. 41, 147 (1982); S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Appl. Phys. 58, 3001 (1985)

    Google Scholar 

  15. Ref. 4

    Google Scholar 

  16. S. M. Spyrou, and L. G. Christophorou, J. Chem. Phys. 82, 1048 (1985)

    Article  ADS  Google Scholar 

  17. A. A. Christodoulides, L. G. Christophorou, and D. L. McCorkle, Chem. Phys. Lett. 139, 350 (1987)

    Article  ADS  Google Scholar 

  18. P. G. Datskos and L. G. Christophorou, J. Chem. Phys. 90, 2626 (1989)

    Article  ADS  Google Scholar 

  19. S. M. Spyrou and L. G. Christophorou, J. Chem. Phys. 82, 2620 (1985)

    Article  ADS  Google Scholar 

  20. S. M. Spyrou and L. G. Christophorou, J. Chem. Phys. 83, 2829 (1985)

    Article  ADS  Google Scholar 

  21. L. G. Christophorou, R. A. Mathis, S. R. Hunter, and J. G. Carter, J. Appl. Phys. 63, 52 (1988)

    Article  ADS  Google Scholar 

  22. L. G. Christophorou, S. R. Hunter, L. A. Pinnaduwage, P. G. Datskos, and J. G. Carter, Proc. IXth Intern. Conf. Gas Discharges and Their Applications, Venice, 19–23 Sept. 1988, p. 657

    Google Scholar 

  23. P. J. Chántry and C. L. Chen, J. Chem. Phys. 90, 2585 (1989)

    Article  ADS  Google Scholar 

  24. P. G. Datskos, L. G. Christophorou, and J. G. Carter (unpublished).

    Google Scholar 

  25. Z. Lj. Petrovic, W. C. Wang, and L. C. Lee, J. Chem. Phys. 90, 3145 (1989)

    Article  ADS  Google Scholar 

  26. C. L. Chen and P. J. Chantry, J. Chem. Phys, 71, 3897 (1979); I. M. Beterov and N. V. Fateyev, J. Phys. (Paris) Colloq. C7–447 (1983); M. W. McGeorch and R. E. Schlier, Phys. ‘Rev. A 33, 1708 (1986); M. J. Rossi, H. Helm, and D. C. Lorents, Appl. Phys. Lett. 47, 576 (1985)

    Google Scholar 

  27. L. G. Christophorou, J. G. Carter, and A. A. Christodoulides, Chem. Phys. Lett. 3, 237 (1969); 4, 646 (1970)

    Google Scholar 

  28. P. D. Burrow, J. Chem. Phys. 59, 4922 (1973)

    Article  ADS  Google Scholar 

  29. L. G. Christophorou, S. R. Hunter, L. A. Pinnaduwage, J. G. Carter, A. A. Christodoulides, and S. M. Spyrou, Phys. Rev. Lett. 58, 1316 (1987)

    Article  ADS  Google Scholar 

  30. L. A. Pinnaduwage, L. G. Christophorou, and S. R. Hunter, J. Chem. Phys. 90, 6275 (1989)

    Article  ADS  Google Scholar 

  31. Ref. 2d, p. 81.

    Google Scholar 

  32. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Appl. Phys. 65, 1858 (1989)

    Article  ADS  Google Scholar 

  33. S. R. Hunter, L. G. Christophorou, J. G. Carter, and P. G. Datskos, in Ref. 2d, pp. 1–8

    Google Scholar 

  34. L. G. Christophorou, in The Liquid State and Its Electrical Properties, E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen (Eds), Plenum Press, New York, 1988, p. 283

    Chapter  Google Scholar 

  35. S. R. Hunter, J. G. Carter, and L. G. Christophorou, J. Chem. Phys. 86, 693 (1987)

    Article  ADS  Google Scholar 

  36. L. G. Christophorou, D. L. McCorkle, D. V. Maxey, and J. G. Carter, Nucl. Instr. Meth. 163, 141 (1979)

    Article  Google Scholar 

  37. S. R. Hunter, J. G. Carter, and L. G. Christophorou, Phys. Rev. A 38, 58 (1988)

    Article  ADS  Google Scholar 

  38. Z. Lj. Petrovic, R. W. Crompton, and G. N. Haddad, Austr. J. Phys. 37, 23 (1984)

    Article  ADS  Google Scholar 

  39. G. N. Haddad, Austr. J. Phys. 38, 677 (1985); M. Hayashi and A. Niwa in 2b, p. 27

    Google Scholar 

  40. G. Schaefer and K. H. Schoenbach, IEEE Trans. Plasma Sci. PS-14, 561 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Christophorou, L.G. (1990). Electron Collisions in Gas Switches* . In: Capitelli, M., Bardsley, J.N. (eds) Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3780-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3780-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6685-0

  • Online ISBN: 978-1-4615-3780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics