Coupled Map Lattices: Abstract Dynamics and Models for Physical Systems

  • Raymond Kapral
Part of the NATO ASI Series book series (NSSB, volume 260)


Complicated spatio-temporal structures can arise when large numbers of simple dynamical elements are coupled. There are many physically interesting systems that fall into this category. Numerous examples can be found in biology where self-organization occurs at the cellular level, the brain where interactions among neurons are responsible for its activity, the heart where patterned excitation leads to normal rhythms and the converse to fibrillation. One can include the equations of continuum hydrodynamics and reaction-diffusion equations in this category since they can be considered to arise from a coupling among local fluid elements. A range of descriptions has been used to study the dynamical behavior of such systems.


Cellular Automaton Diffusive Coupling Bifurcation Structure Phase Transition Curve Inhomogeneous Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Waller and R. Kapral, Phys. Rev. A 30, 2047 (1984); R. Kapral, Phys. Rev. A 31, 3868 (1985).Google Scholar
  2. 2.
    K. Kaneko, Prog. Theor. Phys. 72, 480 (1984); Prog. Theor. Phys. 74, 1033 (1985).CrossRefGoogle Scholar
  3. 3.
    R.J. Deissler, Phys. Lett. A 100, 451 (1984).Google Scholar
  4. 4.
    For reviews with further references see, J.P. Crutchfield and K. Kaneko, in Directions in Chaos, ed. Hao Bai-lin, (World Scientific, Singapore, 1987); K. Kaneko, Physica D 34, 1 (1989); R. Kapral, M.-N. Chee, S.G. Whittington and G.-L. Oppo, in Measures of Complexity and Chaos, ed. N.B. Abraham, A.M. Albano, A. Passamante and P.E. Rapp (Plenum, NY, 1990), pg. 381.Google Scholar
  5. 5.
    See, for instance, Theory and Applications of Cellular Automata, ed., S. Wolfram, (World Scientific, Singapore, 1986).Google Scholar
  6. 6.
    M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978); 21, 669 (1979).CrossRefGoogle Scholar
  7. 7.
    S.P. Kuznetsov, Radiofizika 29, 888 (1986); S.P. Kuznetsov and A.S. Pikovsky, Physica D 19, 384 (1986).Google Scholar
  8. 8.
    K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985).CrossRefGoogle Scholar
  9. 9.
    J.D. Keeler and D. Farmer, Physica D 23, 413 (1986).CrossRefGoogle Scholar
  10. 10.
    H. Chaté and P. Manneville, Physica D 32, 409 (1988).CrossRefGoogle Scholar
  11. 11.
    G.-L. Oppo and R. Kapral, Phys. Rev. A 33, 4219 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Pomeau and P. Manneville, Comm. Math. Phys. 7, 189 (1980).CrossRefGoogle Scholar
  13. 13.
    Y. Pomeau, Physica D 23, 3 (1986).CrossRefGoogle Scholar
  14. 14.
    J.D. Gunton, M. San Miguel and P. Sahni, in Phase Transitions and Critical Phenomena, eds. C. Domb and J.L. Lebowitz, (Academic Press, NY, 1983).Google Scholar
  15. 15.
    S.M. Allen and J.W. Cahn, Acta Metall. 27, 1085 (1979).CrossRefGoogle Scholar
  16. 16.
    R. Kapral and G.-L. Oppo, Physica D 23, 455 (1986); G.-L. Oppo and R. Kapral, Phys. Rev. A 36, 5820 (1987).CrossRefGoogle Scholar
  17. 17.
    T. M. Rogers, K.R. Elder and R.C. Desai, Phys. Rev. B 37, 9638 (1988); K.R. Elder, T.M. Rogers and R.C. Desai, Phys. Rev. B 38, 4725 (1988).CrossRefGoogle Scholar
  18. 18.
    S. Puri, R. Kapral and R.C. Desai, Conserved Order Parameter Dynamics and Chaos in a One-Dimensional Discrete Model, to be published.Google Scholar
  19. 19.
    M.-N. Chee, R. Kapral and S.G. Whittington, Inhomogeneous Perturbations and Phase Resetting in Oscillatory Reaction-Diffusion Systems, J. Chem. Phys., June (1990).Google Scholar
  20. 20.
    A.T. Winfree, The Geometry of Biological Time, (Springer, NY, 1980).Google Scholar
  21. 21.
    I. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968).CrossRefGoogle Scholar
  22. 22.
    M.-N. Chee, R. Kapral and S.G. Whittington, Phase Resetting Dynamics for a Discrete Reaction-Diffusion Model, J. Chem. Phys., June (1990).Google Scholar
  23. 23.
    Y. Oono and S. Puri, Phys. Rev. Lett. 58, 836 (1986).CrossRefGoogle Scholar
  24. 24.
    X.-G. Wu, M.-N. Chee and R. Kapral, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Raymond Kapral
    • 1
  1. 1.Chemical Physics Theory Group Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations