Neural Darwinism and Selective Recognition Automata: How Selection Shapes Perceptual Categories

  • George N. ReekeJr.
  • Olaf Sporns
Part of the NATO ASI Series book series (NSSB, volume 260)


It is becoming increasingly clear that animals generally do not use classical algorithmic strategies to classify objects and events. In this chapter, we summarize an alternative approach, namely, the theory of neuronal group selection (TNGS). The TNGS provides a framework related to Darwinian selection for understanding perceptual systems without a priori assumptions about properties of the stimulus world. We present two models for aspects of visual perception based on synthetic neural modelling, a paradigm we have developed for testing theories about the nervous system by computer simulation. One of these models explores the implications of recent experimental evidence for coherent oscillations in visual cortex. The second is Darwin III, a neurally based simulated automaton capable of autonomous behavior involving categorization and motor acts with an eye and an arm. Automata of this type not only provide new insights into biological mechanisms of categorization, but also indicate how to construct a new class of perception machines with interesting properties.


Receptive Field Lateral Geniculate Nucleus Perceptual Categorization Neuronal Group Coherent Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Edelman, “Neural Darwinism: The Theory of Neuronal Group Selection,” Basic Books, New York (1987).Google Scholar
  2. 2.
    G. M. Edelman, “The Remembered Present: A Biological Theory of Consciousness,” Basic Books, New York (1989).Google Scholar
  3. 3.
    E. E. Smith, and D. L. Medin, “Categories and Concepts,” Harvard University, Cambridge, Mass. (1981).Google Scholar
  4. 4.
    L. Wittgenstein, “Philosophical Investigations,” Macmillan, New York (1953).Google Scholar
  5. 5.
    G. Lakoff, “Women, Fire, and Dangerous Things: What Categories Reveal About the Mind,” University of Chicago, Chicago (1987).Google Scholar
  6. 6.
    E. Rosch, and C. B. Mervis, Cogn. Psychol. 7:573 (1975).CrossRefGoogle Scholar
  7. 7.
    C. B. Mervis, and E. Rosch, Ann. Rev. Psychol. 32:89 (1981).CrossRefGoogle Scholar
  8. 8.
    E. Rosch, C. Simpson, and R. S. Miller, J. Exp. Psychol. Hum. Percept. Perf. 2:491 (1976).CrossRefGoogle Scholar
  9. 9.
    B. C. Malt, and E. E. Smith, Mem. Cogn. 10:69 (1982).CrossRefGoogle Scholar
  10. 10.
    S. L. Armstrong, L. R. Gleitman, and H. Gleitman, Cognition 13:263 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    W. S. McCulloch, and W. Pitts, Bull. Math. Biophys. 5:115 (1943).CrossRefGoogle Scholar
  12. 12.
    W. H. Pitts, and W. S. McCulloch, Bull. Math. Biophys. 9:127 (1947).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Rosenblatt, Psychol. Rev. 65:386 (1958).PubMedCrossRefGoogle Scholar
  14. 14.
    F. Rosenblatt, “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,” Spartan Books, Washington, D.C. (1962).Google Scholar
  15. 15.
    M. Minsky, and S. Papert, “Perceptrons: An Introduction to Computational Geometry,” MIT Press, Cambridge, Mass. (1969).Google Scholar
  16. 16.
    G. Widrow, and M. E. Hoff, IRE Western Electronic Show and Convention, Convention Record, Part 4 1960:96 (1960).Google Scholar
  17. 17.
    M. Bongard, “Pattern Recognition,” Spartan, Washington (1970).Google Scholar
  18. 18.
    J. W. Gyr, J. S. Brown, R. Willey, and A. Zivian, Psych. Bull. 65:174 (1966).CrossRefGoogle Scholar
  19. 19.
    J. J. Gibson, “The Senses Considered as Perceptual Systems,” Houghton Mifflin, Boston (1966).Google Scholar
  20. 20.
    D. E. Rumelhart, J. L. McClelland, and The PDP Research Group, “Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations,” MIT Press, Cambridge, Mass. (1986).Google Scholar
  21. 21.
    D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323:533 (1986).CrossRefGoogle Scholar
  22. 22.
    T. J. Sejnowski, P. K. Kienker, and G. E. Hinton, Physica 22D:260 (1986).Google Scholar
  23. 23.
    T. J. Sejnowski, and C. R. Rosenberg, Complex Syst. 1:145 (1987).Google Scholar
  24. 24.
    N. Qian, and T. J. Sejnowski, J. Mol. Biol. 202:865 (1988).PubMedCrossRefGoogle Scholar
  25. 25.
    L. H. Holley, and M. Karplus, Proc. Natl. Acad. Sci. USA 86:152 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    D. Zipser, and R. A. Andersen, Nature 331:679 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    G. N. Reeke, Jr., and G. M. Edelman, Daedalus, Proc. Am. Acad. Arts and Sciences 117:143 (1988).Google Scholar
  28. 28.
    F. Crick, Nature 337:129 (1989).PubMedCrossRefGoogle Scholar
  29. 29.
    G. N. Reeke, O. Sporns, and G. M. Edelman, in: “Connectionism in Perspective,” R. Pfeifer, Z. Schreter, F. Fogelman-Soulie, and L. Steels, eds., Elsevier, Amsterdam (1989).Google Scholar
  30. 30.
    J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79:2554 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    J. S. Denker, Physica 22D:216 (1986).Google Scholar
  32. 32.
    J. Buhmann, and K. Schulten, Biol. Cybern. 54:319 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    W. Kinzel, Z. Phys. B 60:205 (1985).CrossRefGoogle Scholar
  34. 34.
    Y. S. Abu-Mostafa, and J.-M. St. Jacques, IEEE Trans. Inf. Theory IT-31:461 (1985).CrossRefGoogle Scholar
  35. 35.
    R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, IEEE Trans. Inf. Theory IT-33:461 (1987).CrossRefGoogle Scholar
  36. 36.
    D. W. Tank, and J. J. Hopfield, Sci Am. 257(12):104 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    G. A. Carpenter, and S. Grossberg, Comput. Vision Graphics Image Process. 37:54 (1987).CrossRefGoogle Scholar
  38. 38.
    R. J. Herrnstein, and D. H. Loveland, Science 146:549 (1964).PubMedCrossRefGoogle Scholar
  39. 39.
    R. J. Herrnstein, D. H. Loveland, and C. Cable, J. Exp. Psychol. Arum. Behav. Proc. 2:285 (1976).CrossRefGoogle Scholar
  40. 40.
    A. M. Schrier, and P. M. Brady, J. Exp. Psychol. Anim. Behav. Proc. 13:136 (1987).CrossRefGoogle Scholar
  41. 41.
    R. A. Gardner, and B. T. Gardner, J. Comp. Psychol. 98:381 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    G. M. Edelman, in: “The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function,” G. M. Edelman, and V. B. Mountcastle, eds., MIT Press, Cambridge, Mass. (1978).Google Scholar
  43. 43.
    L. Darden, and J. A. Cain, Philos. Sci. 56:106 (1989).CrossRefGoogle Scholar
  44. 44.
    R. E. Michod, Evolution 43:694 (1989).CrossRefGoogle Scholar
  45. 45.
    W. Singer, in: “The Neural and Molecular Basis of Learning,” J.-P. Changeux, and M. Konishi, eds., Wiley, Chichester (1987).Google Scholar
  46. 46.
    C. M. Gray, and W. Singer, Proc. Natl. Acad. Sci. USA 86:1698 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    M. M. Merzenich, G. Recanzone, W. M. Jenkins, T. T. Allard, and R. J. Nudo, in: “Neurobiology of Neocortex,” P. Rakic, and W. Singer, eds., Wiley, Chichester (1988).Google Scholar
  48. 48.
    N. Wiener, “Cybernetics,” MIT Press, Cambridge, Mass. (1948).Google Scholar
  49. 49.
    L. H. Finkel, and G. M. Edelman, J. Neurosci. 9:3188 (1989).PubMedGoogle Scholar
  50. 50.
    O. Sporns, J. A. Gally, G. N. Reeke, Jr., and G. M. Edelman, Proc. Natl. Acad. Sci. USA 86:7265 (1989).PubMedCrossRefGoogle Scholar
  51. 51.
    O. Sporns, G. Tononi, and G. M. Edelman, in: “Nonlinear Dynamics of Neural Networks,” H. G. Schuster, ed., VCH, Weinheim (in press).Google Scholar
  52. 52.
    C. M. Gray, P. König, A. K. Engel, and W. Singer, Nature 338:334 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J. Reitboeck, Biol. Cybern. 60:121 (1988).PubMedCrossRefGoogle Scholar
  54. 54.
    S. Zeki, Brain Res. 14:271 (1969).PubMedCrossRefGoogle Scholar
  55. 55.
    D. C. Van Essen, in: “Cerebral Cortex, Vol. 3, Visual Cortex,” A. Peters, and E. G. Jones, eds., Plenum, New York, Vol. 3 (1985).Google Scholar
  56. 56.
    S. Zeki, and S. Shipp, Nature 335:311 (1988).PubMedCrossRefGoogle Scholar
  57. 57.
    E. G. Jones, and T. P. S. Powell, Brain 93:793 (1970).PubMedCrossRefGoogle Scholar
  58. 58.
    L. L. Symonds, and A. C. Rosenquist, J. Comp. Neurol. 229:39 (1984).Google Scholar
  59. 59.
    R. Llinàs, and A. A. Grace, Soc. Neurosci. Abstr. 15:660 (1989).Google Scholar
  60. 60.
    A. K. Engel, P. König, C. M. Gray, and W. Singer, Eur. J. Neurosci. (in press).Google Scholar
  61. 61.
    P. König, C. M. Gray, A. K. Engel, and W. Singer, Soc. Neurosci. Abstr. 15:798 (1989).Google Scholar
  62. 62.
    G. N. Reeke, Jr., L. H. Finkel, O. Sporns, and G. M. Edelman, in: “Signal and Sense: Local and Global Order in Perceptual Maps,” G. M. Edelman, W. E. Gall, and W. M. Cowan, eds., Wiley, New York (in press).Google Scholar
  63. 63.
    G. N. Reeke, and G. M. Edelman, Int. J. Supercomputer. Appl. 1:44 (1987).CrossRefGoogle Scholar
  64. 64.
    D. H. Hubel, and T. N. Wiesel, J. Physiol. (London) 160:106 (1962).Google Scholar
  65. 65.
    K. Toyama, M. Kimura, and K. Tanaka, J. Neurophysiol. 46:191 (1981).PubMedGoogle Scholar
  66. 66.
    K. Toyama, M. Kimura, and K. Tanaka, J. Neurophysiol. 46:202 (1981).PubMedGoogle Scholar
  67. 67.
    A. Michalski, G. L. Gerstein, J. Czarkowska, and R. Tarnecki, Exp. Brain Res. 51:97 (1983).PubMedCrossRefGoogle Scholar
  68. 68.
    K. S. Rockland, and J. S. Lund, Science 215:1532 (1982).PubMedCrossRefGoogle Scholar
  69. 69.
    C. D. Gilbert, and T. N. Wiesel, J. Neurosci. 3:1116 (1983).PubMedGoogle Scholar
  70. 70.
    D. Y. Ts’o, C. D. Gilbert, and T. N. Wiesel, J. Neurosci. 6:1160 (1986).Google Scholar
  71. 71.
    H. J. Luhmann, J. M. Greuel, and W. Singer, Eur. J. Neurosci. 2:344 (1990).PubMedCrossRefGoogle Scholar
  72. 72.
    D. Marr, and S. Ullman, Proc. R. Soc. Lond. B211:151 (1981).CrossRefGoogle Scholar
  73. 73.
    C. Koch, and T. Poggio, in: “Models of the Visual Cortex,” D. Rose, and V. G. Dobson, eds., Wiley, Chichester (1985).Google Scholar
  74. 74.
    J. A. Movshon, E. H. Adelson, M. S. Gizzi, and W. T. Newsome, in: “Pattern Recognition Mechanisms,” (1985).Google Scholar
  75. 75.
    T. D. Albright, J. Neurophysiol. 52:1106 (1984).PubMedGoogle Scholar
  76. 76.
    D. H. Perkel, G. L. Gerstein, and G. P. Moore, Biophys. J. 7:391 (1967).PubMedCrossRefGoogle Scholar
  77. 77.
    W. J. Meissen, and W. J. M. Epping, Biol. Cybern. 57:403 (1987).CrossRefGoogle Scholar
  78. 78.
    G. F. Poggio, and L. J. Viernstein, J. Neurophysiol. 27:517 (1964).PubMedGoogle Scholar
  79. 79.
    R. R. Llinàs, Science 242:1654 (1988).PubMedCrossRefGoogle Scholar
  80. 80.
    R. D. Traub, R. Miles, and R. K. S. Wong, Science 243:1319 (1989).PubMedCrossRefGoogle Scholar
  81. 81.
    C. M. Gray, A. K. Engel, P. König, and W. Singer, Eur. J. Neurosci. (in press).Google Scholar
  82. 82.
    D. M. Kammen, E. Niebuhr, and C. Koch, Soc. Neurosci. Abstr. (1990).Google Scholar
  83. 83.
    D. M. Kammen, P. J. Holmes, and C. Koch, in: “Models of Brain Function,” R. M. J. Cotterill, ed., Cambridge University, Cambridge UK (1989).Google Scholar
  84. 84.
    A. Treisman, and G. Gelade, Cogn. Neuropsychol. 12:97 (1980).Google Scholar
  85. 85.
    F. Crick, Proc. Natl. Acad. Sci. USA 81:4586 (1984).PubMedCrossRefGoogle Scholar
  86. 86.
    T. J. Sejnowski, in: “Parallel Distributed Processing II. Applications,” J. L. McClelland, and D. E. Rumelhart, eds., MIT Press, Cambridge, Mass., Vol. 2:372 (1986).Google Scholar
  87. 87.
    A. R. Damasio, Neural Comp. 1:123 (1989).CrossRefGoogle Scholar
  88. 88.
    O. Sporns, S. Roth, and F. F. Seelig, Physica D 26:215 (1987).CrossRefGoogle Scholar
  89. 89.
    T. B. Schillen, and P. König, in: “Parallel Processing in Neural Systems and Computers,” R. Eckmiller, G. Hartmann, and G. Hauske, eds., Elsevier, Amsterdam (1990).Google Scholar
  90. 90.
    H. Sompolinsky, D. Golomb, and D. Kleinfeld, Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  91. 91.
    D. Wang, J. Buhmann, and C. von der Malsburg, Neural Comp. 2:94 (1990).CrossRefGoogle Scholar
  92. 92.
    B. G. Farley, in: “Self-Organizing Systems 1962,” M. C. Yovits, G. T. Jacobi, and G. D. Goldstein, eds., Spartan Books, Washington (1962).Google Scholar
  93. 93.
    P. Andersen, M. Gillow, and T. Rudjord, J. Physiol. (London) 185:418 (1966).Google Scholar
  94. 94.
    F. H. Lopes da Silva, A. Hoeks, H. Smits, and L. H. Zetterberg, Kybernetik 15:27 (1974).PubMedCrossRefGoogle Scholar
  95. 95.
    R. J. MacGregor, and R. J. Palasek, Kybernetik 16:79 (1974).PubMedCrossRefGoogle Scholar
  96. 96.
    D. M. Kammen, P. J. Holmes, and C. Koch, Proc. Natl. Acad. Sci USA (in press).Google Scholar
  97. 97.
    G. N. Reeke, Jr., and O. Sporns, Physica D (in press).Google Scholar
  98. 98.
    N. A. Bernstein, “The Coordination and Regulation of Movements,” Pergamon, Oxford (1967).Google Scholar
  99. 99.
    H. T. A. Whiting, ed., “Human Motor Actions: Bernstein Reassessed,” North-Holland, Amsterdam (1984).Google Scholar
  100. 100.
    G. M. Edelman, and G. N. Reeke, Jr., in: “Parallel Computers, Neural Networks, and Intelligent Systems,” J. A. Robinson, and M. Arbib, eds., MIT Press, Cambridge, Mass. (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • George N. ReekeJr.
    • 1
  • Olaf Sporns
    • 1
  1. 1.The Neurosciences Institute and The Rockefeller UniversityNew YorkUSA

Personalised recommendations