Skip to main content

Matrix Assembly

  • Chapter

Abstract

Matrix assembly, disassembly, and reassembly of collagenous matrices are dynamic processes which occur when an organism undergoes morphogenesis, growth, repair, or regeneration. They are complex events which ascend the biological hierarchy from molecular interactions among adjacent molecules to macroscopic interactions among adjacent tissues. The multiple levels of organization involved in matrix assembly from molecules to final structure, while not understood, can be appreciated by consideration of your hand: over 90% of the organic matter in the skin, tendons, ligaments, and bones is type I collagen. The genetic and chemical details of type I collagen are relatively well understood and discussed in detail in other chapters; however, the assembly algorithms which partition and position these molecules in three-dimensional space into a functional grasping and holding device are not. In vitro studies of isolated type I collagen and procollagen have indicated that much of the assembly process of a collagen fibril can be explained by physicochemical forces, often described as “self-assembly.” Light microscopic studies of type I collagen-rich tissues reveal a variety of architectures ranging from near-complete molecular alignment in tendons and ligaments; a tight, orthogonal network in bone; and a loose network arrangement in skin (Fig. 7-1). Ultrastructural studies of cells producing type I collagen indicate that fibrils form in association with the cell’s external surface in a complex topographic relationship and that the initial elements formed by the cells are relatively short, discontinuous fibril segments. The relationships of the cell-defined extra-cellular domains with matrix assembly permit cellular regulation of the self-assembly process by the manipulation of the microenvironment and temporal and spatial regulation by determination of the time and place of matrix deposition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, E., and Hayashi, T., 1986, In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen, Connect. Tissue Res. 14:257–266.

    PubMed  CAS  Google Scholar 

  • Amudeswari, S., Liang, J. N., and Chakrabarti, B., 1987, Polar—apolar characteristics and fibrillogenesis of glycosylated collagen, Collagen Relat. Res. 7:215–223.

    CAS  Google Scholar 

  • Baer, E., Cassidy, J. J., and Hiltner, A., 1988, Hierarchical structure of collagen and its relationship to the physical properties of tendon, in: Collagen, Vol. II (M. E. Nimni, eds.), pp. 177–200, CRC Press, Boca Raton.

    Google Scholar 

  • Baker, H. N., Rothwell, S. W. Grasser, W. A., Wallis, K. T., and Murphy, D. B., 1990, Copolymerization of two distinct tubulin isotypes during microtubule assembly in vitro, J. Cell Biol. 110:97104.

    Google Scholar 

  • Barnsley, M. F., Massopust, P., Strickland, H., and Sloan, A. D., 1987, Fractal modeling of biological structures, Ann. N.Y. Acad. Sci. 504:179–194.

    PubMed  CAS  Google Scholar 

  • Baron, R., Neff, L., Louvard, D., and Courtoy, P. J., 1985, Cell-mediated extracellular acidification and bone resorption: Evidence for a low pH in resorbing lacunae and localization of a 100–1W lysosomal membrane protein at the osteoclast ruffled border, J. Cell Biol. 101:2210–2222.

    PubMed  CAS  Google Scholar 

  • Bell, E., Ivarsson, B., and Merrill, C., 1979, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc. Natl. Acad. Sci. USA 76:1274–1278.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., and Lande, M. A., 1981, Corneal and scleral collagen fiber formation in vitro, Biochim. Biophys. Acta 670:362–369.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., and Silver, F. H., 1984, Collagen fibrillogenesis in vitro: Comparison of types I, II, and III, Arch. Biochem. Biophys. 235:178–185.

    CAS  Google Scholar 

  • Birk, D. E., and Trelstad, R. L., 1984, Extracellular compartments in matrix morphogenesis: Collagen fibril, bundle, and lamellar formation by corneal fibroblasts, J. Cell Biol. 99:2024–2033.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., and Trelstad, R. L., 1985, Fibroblasts create compartments in the extracellular space where collagen polymerizes into fibrils and fibrils associate into bundles, Ann. N.Y. Acad. Sci. 460:258–266.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., and Trelstad, R. L., 1986, Extracellular compartments in tendon morphogenesis: Collagen fibril, bundle, and macroaggregate formation, J. Cell Biol. 103:231–240.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., Fitch, J. M., Babiarz, J. P., and Linsenmayer, T. F., 1988, Collagen type I and type V are present in the same fibril in the avian corneal stroma, J. Cell Biol. 106:999–1008.

    PubMed  CAS  Google Scholar 

  • Birk, D. E., Southern, J. F., Zycband, E. I., Fallon, J. T., and Trelstad, R. L., 1989a, Collagen fibril bundles: A branching assembly unit in tendon morphogenesis, Development 107:437–443.

    CAS  Google Scholar 

  • Birk, D. E., Zycband, E. I., Winkelmann, D. A., and Trelstad, R. L., 1989b, Collagen fibrillogenesis in situ: Fibril segments are intermediates in matrix assembly, Proc. Natl. Acad. Sci. USA 86:4549–4553.

    CAS  Google Scholar 

  • Birk, D. E., Fitch, J. M., Babiarz, J. P., Doane, K. J., and Linsenmayer, T. F., 1990a, Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter, J. Cell Sci. 95:649–657.

    CAS  Google Scholar 

  • Birk, D. E., Zycband, E. I., Winkelmann, D. A., and Trelstad, R. L.,1990b, Collagen fibrillogenesis in situ. Discontinuous segmental assembly in extracellular compartments, Ann. N.Y. Acad. Sci. 580:176–194.

    CAS  Google Scholar 

  • Brodsky, B., Eikenberry, E. F., Belbruno, K. C., and Sterling, K., 1982, Variations in collagen fibril structure in tendons, Biopolymers 21:935–951.

    PubMed  CAS  Google Scholar 

  • Brown, D. C., and Vogel, K. G., 1990, Characteristics of the in vitro interaction of a small proteoglycan (PG II) of bovine tendon with type I collagen, Matrix 9:468–478.

    Google Scholar 

  • Bruckner, P., and Eikenberry, E. F., 1984, Procollagen is more stable in cellulo than in vitro, Eur. J. Biochem. 140:397–399.

    PubMed  CAS  Google Scholar 

  • Bruckner, P., Vaughan, L., and Winterhalter, K. H., 1985, Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans, Proc. Natl. Acad. Sci. USA 82:2608–2612.

    PubMed  CAS  Google Scholar 

  • Bruckner, P., Mendier, M., Steinmann, B., Huber, S., and Winterhalter, K. H., 1988, The structure of human collagen type IX and its organization in fetal and infant cartilage fibrils, J. Biol Chem. 263:16911–16917.

    PubMed  CAS  Google Scholar 

  • Bruns, R. R., Hulmes, D. J., Therrien, S. F., and Gross, J., 1979, Procollagen segment-long-spacing crystallites: Their role in collagen fibrillogenesis, Proc. Natl. Acad. Sci. USA 76:313–317.

    PubMed  CAS  Google Scholar 

  • Burgeson, R. E., 1988, New collagens, new concepts, Annu. Rev. Cell Biol. 4:551–577.

    PubMed  CAS  Google Scholar 

  • Capaldi, M. J., and Chapman, J. A., 1982, The C-terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro, Biopolymers 21:2291–2313.

    PubMed  CAS  Google Scholar 

  • Caplow, M., Shanks, J., and Brylawski, B. P., 1986, Differentiation between dynamic instability and end-to-end annealing models for length changes of steady-state microtubules, J. Biol. Chem. 261:16233–16240.

    PubMed  CAS  Google Scholar 

  • Chandrasekhar, S., Kleinman, H. K., Hassell, J. R., Martin, G. R., Termine, J. D., and Trelstad, R. L., 1984, Regulation of type I collagen fibril assembly by link protein and proteoglycans, Collagen Relat. Res. 4:323–337.

    CAS  Google Scholar 

  • Chapman, J. A., 1989, The regulation of size and form in the assembly of collagen fibrils in vivo, Biopolymers 28:1367–1382.

    PubMed  CAS  Google Scholar 

  • Craig, A. S., Britles, M. J., Conway, J. F., and Parry, D. A. D., 1989, An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age, Connect. Tissue Res. 19:51–62.

    PubMed  CAS  Google Scholar 

  • Diamant, J., Keller, A., Baer, E., Lith, N., and Arridge, R. G. C., 1972, Collagen; ultrastructure and its relationship to mechanical properties as a function of aging, Proc. Roy. Soc. Lond. B 180:293–315.

    CAS  Google Scholar 

  • Eikenberry, E. F., Brodsky, B., and Parry, D. A. D., 1982, Collagen fibril morphology in developing chick metatarsal tendons: 1. X-ray diffraction studies, Int. J. Biol. Macromol. 4:322–328.

    CAS  Google Scholar 

  • Fitch, J. M., Gross, J., Mayne, R., Johnson Wint, B., and Linsenmayer, T. F., 1984, Organization of collagen types I and V in the embryonic chicken cornea: Monoclonal antibody studies, Proc. Natl. Acad. Sci. USA 81:2791–2795.

    PubMed  CAS  Google Scholar 

  • Fitch, J. M., Birk, D. E., Mentzer, A., Hasty, K. A., Mainardi, C., and Linsenmayer, T. F., 1988, Corneal collagen fibrils: Dissection with specific collagenases and monoclonal antibodies, Invest. Ophthalmol. Vis. Sci. 29:1125–1136.

    PubMed  CAS  Google Scholar 

  • Fleischmajer, R., Timpl, R., Tuderman, L., Raisher, L., Wiestner, M., Perlish, J. S., and Graves, P. N., 1981, Ultrastructural identification of extension aminopropeptides of type I and III collagens in human skin, Proc. Natl. Acad. Sci. USA 78:7360–7364.

    PubMed  CAS  Google Scholar 

  • Fleischmajer, R., Perlish, J. S., Timpl, R., and Olsen, B. R., 1988, Procollagen intermediates during tendon fibrillogenesis, J. Histochem. Cytochem. 36:1425–1432.

    PubMed  CAS  Google Scholar 

  • Fleischmajer, R., Perlish, J. S., Burgeson, R. E., Shaikh-Bahai, F., and Timpl, R., 1990, Type I and type III collagen interactions during fibrillogenesis, Ann. N.Y. Acad. Sci. 580:161–175.

    PubMed  CAS  Google Scholar 

  • Flint, M. H., Craig, A. S., Reilly, H. C., Gillard, G. C., and Parry, D. A., 1984, Collagen fibril diameters and glycosaminoglycan content of skins—Indices of tissue maturity and function, Connect. Tissue Res. 13:69–81.

    PubMed  CAS  Google Scholar 

  • Folkhard, W., Mosier, E., Geerckern, W., Knorzer, E., Nemetschek-Gansler, H., Nemetschek, T., and Koch, M. H. J., 1987, Quantitative analysis of the molecular sliding mechanism in native tendon collagen: Time resolved dynamic studies using synchrotron radiation, Int. J. Biol. Macromol. 9:169–175.

    CAS  Google Scholar 

  • Fraser, R. D., MacRae, T. P., and Miller, A., 1987, Molecular packing in type I collagen fibrils, J. Mol. Biol. 193:115–125.

    PubMed  CAS  Google Scholar 

  • Garg, A. K., Berg, R. A., Silver, F. H., and Garg, H. G., 1989, Effect of proteoglycans on type I collagen fibre formation, Biomaterials 10:413–419.

    PubMed  CAS  Google Scholar 

  • Gilbert, S. F., 1988, Developmental Biology, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Glimcher, M. J., 1989, Mechanism of calcification: Role of collagen fibrils and collagen—phosphoprotein complexes in vitro and in vivo, Anat. Rec. 224:139–153.

    PubMed  CAS  Google Scholar 

  • Grillo, H. C., and Gross, J., 1967, Collagenolytic activity during mammalian wound repair Dev. Biol. 15:300–317.

    PubMed  CAS  Google Scholar 

  • Gross, J., 1974, Collagen biology: Structure, degradation, and disease, Harvey Lect. 68:351–432.

    PubMed  CAS  Google Scholar 

  • Gross, J., Highberger, J., and Schmitt, F. O., 1954, Collagen structures considered as states of aggregation of a kinetic unit. The tropocollagen particle, Proc. Natl. Acad. Sci. USA 40:679–688.

    PubMed  CAS  Google Scholar 

  • Guidry, C., and Grinnell, F., 1987, Contraction of hydrated collagen gels by fibroblasts: Evidence for two mechanisms by which collagen fibrils are stabilized, Collagen Relat. Res. 6:515–529.

    CAS  Google Scholar 

  • Gullberg, D., Terracio, L., Borg, T. K., and Rubin, K., 1989, Identification of integrin-like matrix receptors with affinity for interstitial collagens, J. Biol. Chem. 264:12686–12694.

    PubMed  CAS  Google Scholar 

  • Hardingham, T. E., Muir, H., Kwan, M. K., Lai, W. M., and Mow, V. C., 1987, Viscoelastic properties of proteoglycan solutions with varying proportions present as aggregates, J. Orthopaedic Res. 5:36–46.

    CAS  Google Scholar 

  • Harris, A. K., Stopak, D., and Wild, P., 1981, Fibroblast traction as a mechanism for collagen morphogenesis, Nature 290:249–251.

    PubMed  CAS  Google Scholar 

  • Haworth, R. A., and Chapman, J. A., 1977, A study of the growth of normal and iodinated collagen fibrils in vitro using electron microscope autoradiography, Biopolymers 16:1895–1906.

    PubMed  CAS  Google Scholar 

  • Hendrix, M. J., Hay, E. D., von der Mark, K., and Linsenmayer, T. F., 1982, Immunohistochemical localization of collagen types I and II in the developing chick cornea and tibia by electron microscopy, Invest. Ophthalmol. Vis. Sci. 22:359–375.

    PubMed  CAS  Google Scholar 

  • Henkel, W., and Glanville, R. W., 1982, Covalent crosslinking between molecules of type I and type III collagen, Eur. J. Biochem. 122:205–213.

    PubMed  CAS  Google Scholar 

  • Holmes, D. F., and Chapman, J. A., 1979, Axial mass distributions of collagen fibrils grown in vitro: Results for the end regions of early fibrils, Biochem. Biophys. Res. Commun. 87:993–999.

    PubMed  CAS  Google Scholar 

  • Hulmes, D. J., 1983, A possible mechanism for the regulation of collagen fibril diameter in vivo, Collagen Relat. Res. 3:317–321.

    CAS  Google Scholar 

  • Hulmes, D. J., and Miller, A., 1979, Quasi-hexagonal molecular packing in collagen fibrils, Nature 282:878–880.

    PubMed  CAS  Google Scholar 

  • Hulmes, D. J., Bruns, R. R., and Gross, J., 1983, On the state of aggregation of newly secreted procollagen, Proc. Natl. Acad. Sci. USA 80:388–392.

    PubMed  CAS  Google Scholar 

  • Hulmes, D. J., Holmes, D. F., and Cummings, C., 1985, Crystalline regions in collagen fibrils, J. Mol. Biol. 184:473–477.

    PubMed  CAS  Google Scholar 

  • Hulmes, D. J., Kadler, K. E., Mould, A. P., Hojima, Y., Holmes, D. F., Cummings, C., Chapman, J. A., and Prockop, D. J., 1989, Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide, J. Mol. Biol. 210:337–345.

    PubMed  CAS  Google Scholar 

  • Kadler, K. E., Hojima, Y., and Prockop, D. J., 1987, Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process, J. Biol. Chem. 262:15696–15701.

    PubMed  CAS  Google Scholar 

  • Kadler, K. E., Hojima, Y., and Prockop, D. J., 1990, Collagen fibrils in vitro grow from pointed tips in the C- to N-terminal direction, Biochem. J. 268:339–343.

    PubMed  CAS  Google Scholar 

  • Kastelic, J., Galeski, A., and Baer, E., 1978, The multicomposite structure of tendon, Connect. Tissue Res. 6:11–23.

    PubMed  CAS  Google Scholar 

  • Kato, Y. P., and Silver, F. H., 1990, Formation of continuous collagen fibres: Evaluation of biocompatibility and mechanical properties, Biomaterials 11:169–175.

    PubMed  CAS  Google Scholar 

  • Kato, Y. P., Christiansen, D. L., Hahn, R. A., Shieh, S.-J., Goldstein, J. D., and Silver, F. H., 1989, Mechanical properties of collagen fibers: A comparison of reconstituted and rat tail tendon fibers, Biomaterials 10:38–42.

    PubMed  CAS  Google Scholar 

  • Kato, Y. P., Dunn, M. G., Zawadsky, J. P., Tria, A. J., and Silver, F. H., 1991, Regeneration of achilles tendon using a collagen prosthesis: Results of a year long implantation study, J. Bone J. Surg. 73(A): 561–574.

    CAS  Google Scholar 

  • Keene, D. R., Sakai, L. Y., Bachinger, H. P., and Burgeson, R. E., 1987, Type III collagen can be present on banded collagen fibrils regardless of fibril diameter, J. Cell Biol. 105:2393–2402.

    PubMed  CAS  Google Scholar 

  • Lapiere, C. M., Nusgens, B., and Pierard, G. E., 1977, Interaction between collagen type I and type III in conditioning bundles organization, Connect. Tissue Res. 5:21–29.

    PubMed  CAS  Google Scholar 

  • Linsenmayer, T. F., Fitch, J. M., and Birk, D. E., 1990, Heterotypic collagen fibrils and stabilizing collagens. Controlling elements in corneal morphogenesis? Ann. N.Y. Acad. Sci. 580:143–160.

    PubMed  CAS  Google Scholar 

  • Lord, E. A., and Wilson, C. B., 1984, The Mathematical Description of Shape and Form, Horwood/Wiley, New York.

    Google Scholar 

  • Malacinski, G. M., and Bryant, S. V., 1984, Pattern Formation: A Primer in Developmental Biology, Macmillan Co., New York.

    Google Scholar 

  • Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, Freeman, San Francisco.

    Google Scholar 

  • May, R. M., 1987, Nonlinearities and complex behavior in simple ecological and epidemiological models, Ann. N.Y. Acad. Sci. 504:1–15.

    PubMed  CAS  Google Scholar 

  • McBride, D. J., Hahn, R. A., and Silver, F. H., 1985, Morphological characterization of tendon development during chick embryogenesis, Int. J. Biol. Macromol. 7:71–76.

    Google Scholar 

  • McBride, D. J., Jr., Trelstad, R. L., and Silver, F. H., 1988, Structural and mechanical assessment of developing chick tendon, Int. J. Biol. Macromol. 10:194–200.

    CAS  Google Scholar 

  • Meinhardt, H., 1982, Models of Biological Pattern Formation, Academic Press, New York.

    Google Scholar 

  • Mendler, M., Eich Bender, S. G., Vaughan, L., Winterhalter, K. H., and Bruckner, P., 1989, Cartilage contains mixed fibrils of collagen types II, IX, and XI, J. Cell Biol. 108:191–197.

    PubMed  CAS  Google Scholar 

  • Merrilees, M. J., Tiang, K. M., and Scott, L., 1987, Changes in collagen fibril diameters across artery walls including a correlation with glycosaminoglycan content, Connect. Tissue Res. 16:237–257.

    PubMed  CAS  Google Scholar 

  • Miyahara, M., Hayashi, K., Berger, J., Tanzawa, F. K., Trelstad, R. L., and Prockop, D. J., 1984, Formation of collagen fibrils by enzymatic cleavage of precursors of type I collagen in vitro, J. Biol. Chem. 259:9891–9898.

    PubMed  CAS  Google Scholar 

  • Mosier, E., Folkhard, W., Knorzer, E., Nemetschek-Gansler, H., Nemetschek, T., and Koch, M. H. J., 1985, Stress induced molecular rearrangement in tendon collagen, J. Mol. Biol. 182:589–596.

    Google Scholar 

  • Mould, A. P., Hulmes, D. J., Holmes, D. F., Cummings, C., Sear, C. H., and Chapman, J. A., 1990, D-periodic assemblies of type I procollagen, J. Mol. Biol. 211:581–594.

    PubMed  CAS  Google Scholar 

  • Murphy, D. B., Gray, R. O., Grasser, W. A., and Pollard, T. D., 1988, Direct demonstration of actin filament annealing in vitro, J. Cell Biol. 106:1947–1954.

    PubMed  CAS  Google Scholar 

  • Na, G. C., 1989, Monomer and oligomer of type I collagen: Molecular properties and fibril assembly, Biochemistry 28:7161–7167.

    PubMed  CAS  Google Scholar 

  • Nestler, F. H., Hvidt, S., Ferry, J. D., and Veis, A., 1983, Flexibility of collagen determined from dilute solution viscoelastic measurements, Biopolymers 22:1747–1758.

    PubMed  CAS  Google Scholar 

  • Parry, D. A., and Craig, A. S., 1979, Electron microscope evidence for an 80 A unit in collagen fibrils, Nature 282:213–215.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., and Craig, A. S., 1988, Collagen fibrils during development and maturation and their contribution to the mechanical attributes of connective tissue, in: Collagen, Vol. 2 (M. E. Nimni, eds.), pp. 1–24, CRC Press, Boca Raton.

    Google Scholar 

  • Ploetz, C., Zycband, E. I., and Birk, D. E., 1991, Collagen fibril assembly and deposition in the developing dermis: Segmental deposition in extracellular compartments, J. Struct. Biol. 106: 73–81.

    PubMed  CAS  Google Scholar 

  • Prigogine, L., 1980, From Being to Becoming: Time and Complexity in Physical Sciences, Freeman, San Francisco.

    Google Scholar 

  • Prockop, D. J., Kadler, K. E., Kuivaniemi, H., Tromp, G., and Vogel., B. E., 1989, Type I procollagen: The gene—protein system that harbors most of the mutations causing osteogenesis imperfecta and probably more common heritable disorders of connective tissue, Am. J. Med. Genet. 34:60–67.

    PubMed  CAS  Google Scholar 

  • Rothwell, S. W., Grasser, W. A., and Murphy, D. B., 1986, End-to-end annealing of microtubules in vitro, J. Cell Biol. 102:619–627.

    PubMed  CAS  Google Scholar 

  • Rowe, R. W. D., 1988, The structure of rat tail tendon, Connect. Tissue Res. 14:9–20.

    Google Scholar 

  • Ruoslahti, E., 1988, Structure and biology of proteoglycans, Annu. Rev. Cell Biol. 4:229–255.

    PubMed  CAS  Google Scholar 

  • Scott, J. E., 1986, Proteoglycan—collagen interactions, Ciba Found. Symp. 124:104–124.

    PubMed  CAS  Google Scholar 

  • Scott, J. E., and Haigh, M., 1988, Identification of specific binding sites for keratan sulphate pro-teoglycans and chondroitin—dermatan sulphate proteoglycans on collagen fibrils in cornea by the use of cupromeronic blue in ‘critical-electrolyte-concentration’ techniques, Biochem. J. 253:607–610.

    PubMed  CAS  Google Scholar 

  • Silver, F. H., 1982, A molecular model for linear and lateral growth of type I collagen fibrils, Collagen Relat. Res. 2:219–229.

    CAS  Google Scholar 

  • Silver, F. H., and Doillon, C. J., 1989, Biocompatibility: Interactions of Biological and Implantable Materials, Vol. 1, Polymers, VCH Publishers, New York.

    Google Scholar 

  • Silver, F. H., and Trelstad, R. L., 1979, Linear aggregation and the turbidimetric lag phase: Type I collagen fibrillogenesis in vitro, J. Theor. Biol. 81:515–526.

    PubMed  CAS  Google Scholar 

  • Silver, F. H., and Trelstad, R. L., 1980, Type I collagen in solution. Structure and properties of fibril fragments, J. Biol. Chem. 255:9427–9433.

    PubMed  CAS  Google Scholar 

  • Silver, F. H., Langley, K. H., and Trelstad, R. L., 1979, Type I collagen fibrillogenesis: Initiation via reversible linear and lateral growth steps, Biopolymers 18:2523–2535.

    PubMed  CAS  Google Scholar 

  • Silver, F. H., Kato, Y. P., Ohno, M., and Wasserman, A. J., 1992, Analysis of soft tissues as composites, in: Biomedical Applications of Composites (C. Migliarese and J. L. Kardos, eds.), CRC Press, Boca Raton, Fla., in press.

    Google Scholar 

  • Stevens, P. S., 1974, Patterns in Nature, Atlantic/Little, Brown, Boston.

    Google Scholar 

  • Stopak, D., Wessels, N. K., and Harris, A. K., 1985, Morphogenetic rearrangement of injected collagen in developing chicken limb buds, Proc. Natl. Acad. Sci. USA 82:2804–2808.

    PubMed  CAS  Google Scholar 

  • Suarez, G., Oronsky, A. L., Bordas, J., and Koch, M. H., 1985, Synchrotron radiation x-ray scattering in the early stages of in vitro collagen fibril formation, Proc. Natl. Acad. Sci. USA 82:4693–4696.

    PubMed  CAS  Google Scholar 

  • Thom, R., 1975, Structural Stability and Morphogenesis, Benjamin, Reading, Mass.

    Google Scholar 

  • Thompson, D., 1969, On Growth and Form, Abridged Edition (J. T. Bonner, ed.), Cambridge University Press, London.

    Google Scholar 

  • Trelstad, R. L., 1970, The Golgi apparatus in chick corneal epithelium: Changes in intracellular position during development, J. Cell Biol. 45:34–42.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., 1971, Vacuoles in the embryonic chick corneal epithelium, an epithelium which produces collagen, J. Cell Biol. 48:689–694.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., 1977, Mesenchymal cell polarity and morphogenesis of chick cartilage, Dev. Biol. 59:153–163.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., 1982, The bilaterally asymmetrical architecture of the submammalian corneal stroma resembles a cholesteric liquid crystal, Dev. Biol. 92:133–134.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., and Birk, D. E., 1984, Collagen fibril assembly at the surface of polarized cells, in: Extracellular Matrix in Development (R. L. Trelstad, ed.), pp. 513–543

    Google Scholar 

  • Liss, New York. Trelstad, R. L., and Birk, D. E., 1985, The fibroblast in morphogenesis and fibrosis: Cell topography and surface-related functions, Ciba Found. Symp. 114:4–19.

    Google Scholar 

  • Trelstad, R. L., and Coulombre, A. J., 1971, Morphogenesis of the collagenous stroma in the chick cornea, J. Cell Biol. 50:840–858.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., and Hayashi, K., 1979, Tendon collagen fibrillogenesis: Intracellular subassemblies and cell surface changes associated with fibril growth, Dev. Biol. 71:228–242.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., and Silver, F. H., 1981, Matrix assembly, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.), pp. 179–215, Plenum Press, New York.

    Google Scholar 

  • Trelstad, R. L., Hayashi, K., and Gross, J., 1976, Collagen fibrillogenesis: Intermediate aggregates and suprafibrillar order, Proc. Natl. Acad. Sci. USA 73:4027–4031.

    PubMed  CAS  Google Scholar 

  • Trelstad, R. L., Hayashi, M., Hayashi, K., and Birk, D. E., 1987, Fibrils, Fibonacci and fractals: Searching for rules and rulers of morphogenesis in the orthogonal stroma of the chick cornea, in: The Microenvironment and Vision (J. B. Sheffield and S. R. Hilfer, eds.), pp. 1–27, Springer-Verlag, Berlin.

    Google Scholar 

  • van der Rest, M., and Mayne, R., 1988, Type IX collagen proteoglycan from cartilage is covalently crosslinked to type II collagen, J. Biol. Chem. 263:1615–1618.

    PubMed  Google Scholar 

  • Vaughan, L., Mendier, M., Huber, S., Bruckner, P., Winterhalter, K. H., Irwin, M. I., and Mayne, R., 1988, D-periodic distribution of collagen type IX along cartilage fibrils, J. Cell Biol. 106:991–997.

    PubMed  CAS  Google Scholar 

  • Vogel, K. G., Paulsson, M., and Heinegard, D., 1984, Specific inhibition of type I and type II collagen fibrillogenesis by small proteoglycan of tendon, Biochem. J. 223:587–597.

    PubMed  CAS  Google Scholar 

  • Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gosline, J. M., 1976, Mechanical Design in Organisms, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Wallace, D., 1985, The role of hydrophobic bonding in collagen fibril formation: A quantitative model, Biopolymers 24:1705–1720.

    PubMed  CAS  Google Scholar 

  • Ward, N. P., Hulmes, D. J., and Chapman, J. A., 1986, Collagen self-assembly in vitro: Electron microscopy of initial aggregates formed during the lag phase, J. Mol. Biol. 190:107–112.

    PubMed  CAS  Google Scholar 

  • Weinstock, M., and Leblond, C. P., 1974, Synthesis, migration and release of precursor collagen by odontoblasts as visualized by radioautography after 3H proline administration, J. Cell Biol. 60:92–127.

    PubMed  CAS  Google Scholar 

  • Weiss, P., 1934, In vitro experiments on the factors determining the course of the outgrowing nerve fiber, J. Exp. Zool. 68:393–448.

    Google Scholar 

  • Williams, R. C., Jr., and Rone, L. A., 1989, End-to-end joining of taxol-stabilized GDP-containing microtubules, J. Biol. Chem. 264:1663–1670.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birk, D.E., Silver, F.H., Trelstad, R.L. (1991). Matrix Assembly. In: Hay, E.D. (eds) Cell Biology of Extracellular Matrix. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3770-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3770-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6680-5

  • Online ISBN: 978-1-4615-3770-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics