Metabolism and Pathology
  • Vincent C. Hascall
  • Dick K. Heinegård
  • Thomas N. Wight


Proteoglycan metabolism in most cells is a highly regulated, dynamic process that contributes directly to cell and tissue functions. In many, perhaps most cases, PG metabolism is in steady state, i.e., biosynthesis of new molecules balances the catabolism of older molecules such that a constant concentration of PGs is maintained in a particular compartment over time. Cells in mature connective tissues devote a large proportion of their metabolic energy to PG synthesis. Chondrocytes, for example, can devote 5% or more of their total protein synthesis to making the core protein of aggrecan; and the subsequent assembly of the complex carbohydrate structures on the core protein requires dozens of enzymes and the formation of an average of more than 25,000 covalent bonds. Catabolism of PGs is also very active. The half-life of PGs in extracellular matrices can range from a few days to a few weeks, and cell surface PGs generally have half-lives of only a few hours. Changes in the metabolism and structure of PGs can have profound effects on the pathobiology of many diseases. This chapter, then, summarizes current concepts and problems relating to biosynthesis, catabolism, and pathology of PGs. The structures and functions of the major PGs described below are presented in detail in Chapter 2.


Hyaluronic Acid Core Protein Keratan Sulfate Chondroitin Sulfate Proteoglycan Turner Syndrome Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beaven, L. A., Davies, M., Couchman, J. R., Williams, M. A., and Mason, R. M., 1989, In vivo turnover of the basement membrane and other heparan sulfate proteoglycans of rat glomerulus, Arch. Biochem. Biophys. 269:576–585.CrossRefGoogle Scholar
  2. Bourdon, M. A., 1990, Structure and role of cloned small proteoglycans, in: Extracellular Matrix Genes (L. Sandell and C. Boyd, eds.), pp. 157–174, Academic Press, New York.Google Scholar
  3. Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E., 1985, Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA, Proc. Natl. Acad. Sci. USA 82:1321–1325.PubMedCrossRefGoogle Scholar
  4. Camejo, G., 1982, The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue. Its possible role in atherogenesis, Adv. Lipid Res. 19:1–53.PubMedGoogle Scholar
  5. Caterson, B., Mahmoodian, F., Sorrell, J. M., Hardingham, T. E., Bayliss, M. T., Carney, S. L., Ratcliffe, A., and Muir, H., 1991, Modulation of native chondroitin sulphate structure in tissue development and in disease, J. Cell Sci. 97:411–417.Google Scholar
  6. Chin, J R., Murphy, G., and Werb, Z., 1985, Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase: biosynthesis, isolation, characterization and substrates, J. Biol. Chem. 260:12367–12376.PubMedGoogle Scholar
  7. Duskin, D., and Mahoney, W. C., 1982, Relationship of the structure and biological activity of the natural homologues of tunicamycin, J. Biot. Chem. 257:3105–3109.Google Scholar
  8. Engström-Laurent, A., 1989, Changes in hyaluronan concentration in tissues and body fluids in disease states, Ciba Found. Symp. 143:233–247.PubMedGoogle Scholar
  9. Esko, J. D., Elgavish, A., Prasthofer, T., Taylor, W. H., and Weinke, J. L., 1986, Sulfate transport-deficient mutants of Chinese hamster ovary cells. Sulfation of glycosaminoglycans dependent on cysteine, J. Biol. Chem. 261:15725–15733.PubMedGoogle Scholar
  10. Fluharty, A. L., 1987, Diseases of glycosaminoglycan and proteoglycan metabolism, in: Connective Tissue Disease: Molecular Pathology of the Extracellular Matrix (J. Uitto and A. Perejda, eds.), pp. 491–521, Dekker, New York.Google Scholar
  11. Gillard, G. C., Reilly, H. C., Bell-Booth, P. G., and Flint, M. H., 1979, The influence of mechanical forces on the glycosaminoglycan content of the rabbit flexor digitorum profundus tendon, Connect. Tissue Res. 7:37–46.PubMedCrossRefGoogle Scholar
  12. Hanover, J. A., Elting, J., Mintz, G. R., and Lennarz, W. J., 1982, Temporal aspects of the N- and O- glycosylation of human chorionic gonadotropin, J. Biol. Chem. 257:10172–10177.PubMedGoogle Scholar
  13. Hart, G. W., and Lennarz, W. J., 1978, Effects of tunicamycin on the biosynthesis of glycosaminoglycans by embryonic chick cornea, J. Biol. Chem. 253:5795–5801.PubMedGoogle Scholar
  14. Hascall, V. C., 1988, Proteoglycans: The chondroitin sulfate/keratan sulfate proteoglycan of cartilage, ISI Atlas of Science Biochemistry 1:189–198.Google Scholar
  15. Hascall, G. K., 1980, Ultrastructure of the chondrocytes and extracellular matrix of the Swarm rat chondrosarcoma, Anat. Rec. 198:135–146.PubMedCrossRefGoogle Scholar
  16. Hascall, V. C., and Hascall, G. K., 1981, Proteoglycans, in: Cell Biology of Extracellular Matrix (E. D. Hay, ed.) pp. 39–63, Plenum Press, New York.CrossRefGoogle Scholar
  17. Hascall, V. C., Morales, T. I., Hascall, G. K., Handley, C. J., and McQuillan, D. J., 1983, Biosynthesis and turnover of proteoglycans in organ culture of bovine articular cartilage, J. Rheumatol. Suppl. 10:45–52.Google Scholar
  18. Hascall, V. C., Luyten, F. P., Pleas, A. H. K., and Sandy, J. D., 1990, Steady-state metabolism of proteoglycans in bovine articular cartilage explants, in: Methods in Cartilage Research (A. Maroudas and K. Kuettner, eds.), pp. 108–112, Academic Press, New York.Google Scholar
  19. Hirschberg, C. B., and Snider, M. D., 1987, Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus, Annu. Rev. Biochem. 56:63–87.PubMedCrossRefGoogle Scholar
  20. Humphries, D. E., and Silbert, J. E., 1988, Chlorate: A reversible inhibitor of proteoglycan sulfation, Biochem. Biophys. Res. Commun. 154:365–371.PubMedCrossRefGoogle Scholar
  21. Huttner, W. B., and Baeuerle, P. A., 1988, Protein sulfation on tyrosine, in: Modern Cell Biology, Vol. 6 (B. Satir, ed.), pp. 97–140, Liss, New York.Google Scholar
  22. Inerot, S., Heinegârd, D., Olsson, S.-E., Telhag, H., and Audell, L., 1991, Proteoglycan alterations during developing experimental osteoarthritis in a novel hip joint model, J. Orthop. Res. 9: 658–673.PubMedCrossRefGoogle Scholar
  23. Ishihara, M., Fedarko, N. S., and Conrad, H. E., 1987, Involvement of phosphatidylinositol and insulin in the co-ordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth,J. Biol. Chem. 262:4708–4716.PubMedGoogle Scholar
  24. Juul, S. W., Wight, T. N., and Hascall, V. C., 1991, Proteoglycans of the lung, in: The Lung: Scientific Foundations Vol. 1 (R. Crystal and J. West, eds.), pp. 413–420. Raven Press, New York.Google Scholar
  25. Kanwar, Y. S., 1984, Biophysiology of glomerular filtration and proteinuria, Lab. Invest. 51:7–21.PubMedGoogle Scholar
  26. Kanwar, Y. S., Linker, A., and Farquhar, M. G., 1980, Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion, J. Cell Biol . 86:683–693.CrossRefGoogle Scholar
  27. Kimata, K., Barrach, H. J., Brown, K. S., and Pennypacker, J. P., 1981, Absence of proteoglycan core protein in cartilage from the cmd (cartilage matrix deficiency) mouse, J. Biol. Chem. 256:6961–6968.PubMedGoogle Scholar
  28. Kimura, J. H., Hardingham, T. E., and Hascall, V. C., 1980, Assembly of newly synthesized proteoglycan and link protein into aggregates in cultures of chondrosarcoma chondrocytes, J. Biol. Chem. 255:7134–7143.PubMedGoogle Scholar
  29. Kisilevsky, R., 1990, Heparan sulfate proteoglycans in amyloidogenesis: An epiphenomenon, a unique factor, or the tip of a more fundamental process, Lab. Invest. 63:589–591.PubMedGoogle Scholar
  30. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54:631–664.PubMedCrossRefGoogle Scholar
  31. Kresse, H., Rosthoj. S., Quentin, E., Hollmann, J., Glössl, J., Okada, S., and Tonnesen, T., 1987, Glycosaminoglycan-free small proteoglycan core protein is secreted by fibroblasts from a patient with a syndrome resembling progeroid, Am. J. Hum. Genet. 41:436–453.PubMedGoogle Scholar
  32. Laurent, T. C., and Fraser, J. R. E., 1986, Properties and turnover of hyaluronan, Ciba Found. Symp. 124:9–29.PubMedGoogle Scholar
  33. Lindahl, U., 1989, Biosynthesis of heparin and related structures, in: Heparin: Chemical and Biological Properties, Clinical Applications (D. Lane and U. Lindahl, eds.), pp. 159–189, Arnold, London.Google Scholar
  34. Lohmander, L. S., Hascall, V. C., and Caplan, A. I., 1979, Effects of 4-methyl umbelliferyl-3-n-xylopyranoside on chondrogenesis and proteoglycan synthesis in chick limb bud mesenchymal cell cultures, J. Biol. Chem. 254:10551–10561.PubMedGoogle Scholar
  35. Lohmander, L. S., Fellini, S. A., Kimura, J. H., Stevens, R. L., and Hascall, V. C., 1983, Formation of proteoglycan aggregates in rat chondrosarcoma chondrocyte cultures treated with tunicamycin, J. Biol. Chem. 258:12280–12286.PubMedGoogle Scholar
  36. Lohmander, L. S., Hascall, V. C., Yanagishita, M., Kuettner, K. E., and Kimura, J. H., 1986, Post-translational events in proteoglycan synthesis: Kinetics of synthesis of chondroitin sulfate and oligosaccharides on the core protein, Arch. Biochem. Biophys. 250:211–227.PubMedCrossRefGoogle Scholar
  37. Lohmander, L. S., Dahlberg, L., Ryd, L., and Heinegárd, D., 1989, Increased levels of proteoglycan fragments in knee joint fluid after injury, Arthritis Rheum. 32:1434–1442.PubMedCrossRefGoogle Scholar
  38. Lugemwa, F. N., and Esko, J. D., 1991, Estradiol-3-n-xyloside, an efficient primer for heparan sulfate biosynthesis, J. Biol. Chem. 266: 6674–6677.PubMedGoogle Scholar
  39. Mason, R. M., Kimura, J. H., and Hascall, V. C., 1982, Biosynthesis of hyaluronic acid in cultures of chondrocytes from the Swarm rat chondrosarcoma, J. Biol. Chem. 257:2236–2245.PubMedGoogle Scholar
  40. Midura, R. J., and Hascall, V. C., 1989, Analysis of the proteoglycans synthesized by corneal explants from embryonic chicken: Structural characterization of the keratan sulfate and der-matan sulfate proteoglycans from corneal stroma, J. Biol. Chem. 264:1423–1430.PubMedGoogle Scholar
  41. Midura, R. J., Hascall, V. C., MacCallum, D. K., Meyer, R. F., Thonar, E. J.-M. A., Hassell, J. R., Smith, C. F., and Klintworth, G. K., 1990, Proteoglycan biosynthesis by human corneas from patients with types 1 and 2 macular corneal dystrophy, J. Biol. Chem. 265:15947–15955.PubMedGoogle Scholar
  42. Morales, T. I., and Hascall, V. C., 1988, Correlated metabolism of proteoglycans and hyaluronic acid in bovine cartilage organ cultures, J. Biol. Chem. 263:3632–3638.PubMedGoogle Scholar
  43. Mörgelin, M., Paulsson, M., Malmström, A., and Heinegárd, D., 1989, Shared and distinct structural features of interstitial proteoglycans from different bovine tissues revealed by electron microscopy, J. Biol. Chem. 264:12080–12090.PubMedGoogle Scholar
  44. Nakazawa, K., Hassell, J. R., Hascall, V. C., Lohmander, L. S., Newsome, D. A., and Krachmer, J., 1984, Defective processing of keratan sulfate in macular corneal dystrophy, J. Biol. Chem. 259:13751–13757.PubMedGoogle Scholar
  45. Neame, P. J., Choi, H. U., and Rosenberg, L. C., 1989, The primary structure of the core protein of the small, leucine-rich proteoglycan (PG-I) from bovine articular cartilage, J. Biol. Chem. 264:8653–8660.PubMedGoogle Scholar
  46. Neufeld, E. F., and Muenzer, J., 1989, The mucopolysaccharidoses, in: The Metabolic Basis of Inherited Disease, Sixth ed. (C. Scriver, A. Beaudet, W. Sly, and D. Valle, eds.), pp. 1565–1587, McGraw-Hill, New York.Google Scholar
  47. Ng, K. F., and Schwartz, N. B., 1989, Solubilization and partial purification of hyaluronate synthetase from oligodendroglioma cells, J. Biol. Chem. 264:11776–11783.PubMedGoogle Scholar
  48. Nilsson, B., De Luca, S., Lohmander, L. S., and Hascall, V. C., 1982, Structures of N-linked and O-linked oligosaccharides on proteoglycan monomer isolated from the Swarm rat chondrosarcoma, J. Biol. Chem. 257:10920–10927.PubMedGoogle Scholar
  49. Nilsson, B., Nakazawa, K., Hassell, J. R., Newsome, D. A., and Hascall, V. C., 1983, Structure of oligosaccharides and the linkage region between keratan sulfate and the core protein on proteoglycans from monkey cornea, J. Biol. Chem. 258:6056–6063.PubMedGoogle Scholar
  50. Nuwayhid, N., Glaser, J. H., Johnson, J. C., Conrad, H. E., Hauser, S. C., and Hirschberg, C. B., 1986, Xylosylation and glucuronosylation reactions in rat liver Golgi apparatus and endoplasmic reticulum, J. Biol. Chem. 261:12936–12941.PubMedGoogle Scholar
  51. Okayama, M., Kimata, K., and Suzuki, S., 1973, The influence of p-nitrophenyl beta-xyloside on the synthesis of proteochondroitin sulfate by slices of embryonic chick cartilage, J. Biochem. (Tokyo) 74:1069–1073.Google Scholar
  52. Orkin, R. W., Pratt, R. M., and Martin, G. R., 1976, Undersulfated glycosaminoglycans in the cartilage matrix of brachymorphic mice, Dev. Biol. 50:82–94.PubMedCrossRefGoogle Scholar
  53. Orkin, R. W., Williams, B. R., Cranley, R. E., Poppke, D. C., and Brown, K. S., 1977, Defects in the cartilaginous growth plates of brachymorphic mice, J. Cell Biol. 73:287–299.PubMedCrossRefGoogle Scholar
  54. Pennypacker, J. P., and Goetinck, P. F., 1976, Biochemical and ultrastructural studies of collagen and proteochondroitin sulfate in normal and nanomelic cartilage, Dev. Biol. 50:35–47.PubMedCrossRefGoogle Scholar
  55. Philipson, L. H., and Schwartz, N. B., 1984, Subcellular localization of hyaluronate synthetase in oligodendroglioma cells, J. Biol. Chem. 259:5017–5023.PubMedGoogle Scholar
  56. Pratt, R. M., Yamada, K. M., Olden, K., Ohanian, S. H., and Hascall, V. C., 1979, Tunicamycininduced alterations in the synthesis of sulfated proteoglycans and cell surface morphology in the chick embryo fibroblast, Exp. Cell Res. 118:245–252.PubMedCrossRefGoogle Scholar
  57. Prehm, P., 1989, Identification and regulation of the eukaryotic hyaluronate synthase, Ciba Found. Symp. 143:21–40.PubMedGoogle Scholar
  58. Pulkkinen, L., Kainulainen, K., Krusius, T., Makinen, P., Schollin, J., Gustaysson, K. H., and Peltonen, L., 1990, Deficient expression of the gene coding for decorin in a lethal form of Marfan syndrome, J. Biol. Chem. 265:17780–17785.PubMedGoogle Scholar
  59. Quentin, E., Gladen, A., Rodén, L., and Kresse, H., 1990, A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome, Proc. Natl. Acad. Sci. USA 87:1342–1346.PubMedCrossRefGoogle Scholar
  60. Robinson, H. C., Brett, M. J., Tralaggan, P. J., Lowther, D., and Okayama, M., 1975, The effect of n-xylose, beta-n-xylosides and beta-n-galactosides on chondroitin sulphate biosynthesis in embryonic chicken cartilage, Biochem. J. 148:25–34.PubMedGoogle Scholar
  61. Rodén, L., 1980, Structure and metabolism of connective tissue proteoglycans, in: The Biochemistry of Glycoproteins and Proteoglycans (W. Lennarz, ed.), pp. 267–371, Plenum Press, New York.CrossRefGoogle Scholar
  62. Rohrbach, D. H., Hassell, J. R., Kleinman, H. K., and Martin G. R., 1982, Alterations in the basement membrane (heparan sulfate) proteoglycan in diabetic mice, Diabetes 31:185–188.PubMedCrossRefGoogle Scholar
  63. Rohrmann, K., Niemann, R., and Buddecke, E., 1985, Two N-acetylgalactosaminyltransferases are involved in the biosynthesis of chondroitin sulfate, Eur. J. Biochem. 148:463–469.PubMedCrossRefGoogle Scholar
  64. Saxne, T., Heinegárd, D., Wollheim, F. A., and Pettersson, H., 1985, Difference in cartilage proteoglycan level in synovial fluid in early rheumatoid arthritis and reactive arthritis, Lancet ii:127–128.Google Scholar
  65. Schachter, H., 1986, Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides, Biochem. Cell Biol. 64:163–181.Google Scholar
  66. Schönherr, E., Järveläinen, H., Sandell, L. J., and Wight, T. N., 1991, Effects of PDGF and TGF-ß on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells, J. Biol. Chem. in press.Google Scholar
  67. Schwartz, N. B., Galligani, L., Ho, P. L., and Dorfman, A., 1974, Stimulation of synthesis of free chondroitin sulfate chains by beta-n-xylosides in cultured cells, Proc. Natl. Acad. Sci. USA 71:4047–4051.PubMedCrossRefGoogle Scholar
  68. Snow, A. D., and Wight, T. N., 1989, Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses, Neurobiol. Aging 10:481–497.PubMedCrossRefGoogle Scholar
  69. Sommarin, Y., and Heinegárd, D., 1983, Specific interaction between cartilage proteoglycans and hyaluronic acid at the chondrocyte cell surface, Biochem. J. 214:777–784.PubMedGoogle Scholar
  70. Stevens, R. L., Razin, E., Austen, K. F., Hein, A., Caulfield, J. P., Seno, N., Schmid, K., and Akiyama, F., 1983, Synthesis of chondroitin sulfate E glycosaminoglycan onto p-nitrophenyl-beta-n-xyloside and its localization to the secretory granules of rat serosal mast cells and mouse bone marrow-derived mast cells, J. Biol. Chem. 258:5977–5984.PubMedGoogle Scholar
  71. Sugahara, K., and Schwartz, N. B., 1979, Defect in 3-phosphoadenosine-5-phosphosulfate formation in brachymorphic mice, Proc. Natl. Acad. Sci. USA 76:6615–6618.PubMedCrossRefGoogle Scholar
  72. Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C. 1990, Extracellular calcium regulates distribution and transport of heparan sulfate proteoglycans in a rat parathyroid cell line, J. Biol. Chem. 265:13661–13668.PubMedGoogle Scholar
  73. Thonar, E. J.-M. A., Lohmander, L. S., Kimura, J. H., Fellini, S. A., Yanagishita, M., and Hascall, V. C., 1983, Biosynthesis of 0-linked oligosaccharides on proteoglycans by chondrocytes from the Swarm rat chondrosarcoma, J. Biol. Chem. 258:11564–11570.PubMedGoogle Scholar
  74. Thonar, E. J.-M. A., Lenz, M. E., Klintworth, G. K., Caterson, B., Pachman, L. M., Glickman, P., Katz, R., Huff, J., and Kuettner, K. E., 1985, Quantification of keratan sulfate in blood as a marker of cartilage catabolism, Arthritis Rheum. 28:1367–1376.PubMedCrossRefGoogle Scholar
  75. Vernier, R. L., Klein, D. J., Sisson, S. P., Mahan, J. D., Oegema, T. R., and Brown, D. M., 1983, Heparan sulfate-rich anionic sites in the human glomerular basement membrane, N. Engl. J. Med . 309:1001–1009.PubMedCrossRefGoogle Scholar
  76. Vertel, B. M., Velasco, A., LaFrance, S., Walters, L., and Kaczman-Daniel, K., 1989, Precursors of chondroitin sulfate proteoglycan are segregated within a subcompartment of the chondrocyte endoplasmic reticulum, J. Cell Biol. 109:1827–1836.PubMedCrossRefGoogle Scholar
  77. Vetter, U., Fedarko, N. S., Fisher, L. W., Young, M. F., Termine, J. D., Just, W., Vogel, W., and Gehron-Robey, P., 1991, Biglycan synthesis in fibroblasts of patients with Turner syndrome and other sex chromosome anomalies, J. Clin. Invest. in press.Google Scholar
  78. Vogel, K. G., and Koob, T. J., 1989, Structural specialization in tendons under compression, Int. Rev. Cytol. 115:267–293.PubMedCrossRefGoogle Scholar
  79. Wight, T. N., 1989, Cell biology of arterial proteoglycans, Arteriosclerosis 9:1–20.PubMedCrossRefGoogle Scholar
  80. Wight, T. N., Lark, M. W., and Kinsella, M. G., 1987, Blood vessel proteoglycans, in: Biology of Proteoglycans (T. Wight and R. Mecham, eds.), pp. 267–300, Academic Press, New York.Google Scholar
  81. Yanagishita, M., 1986, Tunicamycin inhibits proteoglycan synthesis in rat ovarian granulosa cells in culture, Arch. Biochem. Biophys. 251:287–298.PubMedCrossRefGoogle Scholar
  82. Yanagishita, M., and Hascall, V. C., 1987, Proteoglycan metabolism by rat ovarian granulosa cells in vitro, in: Biology of Proteoglycans (T. Wight and R. Mecham, eds.), pp. 105–128, Academic Press, New York.Google Scholar
  83. Yanagishita, M., and McQuillan, D. J., 1989, Two forms of plasma membrane-intercalated heparan sulfate proteoglycans in rat ovarian granulosa cells: Labeling of proteoglycans with a photoactivatable hydrophobic probe and effect of the membrane anchor-specific phospholipase C, J. Biol. Chem. 264:17551–17558.PubMedGoogle Scholar
  84. Yanagishita, M., Salustri, A., and Hascall, V. C., 1989, Determination of the specific activity of hexosamine precursors by analysis of double labeled disaccharides from chondroitinase digestion of chondroitinídermatan sulfate, Methods Enzymol. 179:435–455.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Vincent C. Hascall
    • 1
  • Dick K. Heinegård
    • 2
  • Thomas N. Wight
    • 3
  1. 1.National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA
  2. 2.Department of Physiological ChemistryUniversity of LundLundSweden
  3. 3.Department of PathologyUniversity of WashingtonSeattleUSA

Personalised recommendations