Skip to main content

Abstract

Medical therapies using lasers typically involve photochemical, thermal or mechanical reactions created through the absorption of light in the treated tissue. Absorption varies with tissue type and is a function of wavelength. During irradiation, absorption may change owing to dehydration, coagulation, carbonization, or ablation which ironically are the desired results of many accepted surgical procedures. The complex interaction of thermal and optical events during irradiation increases the difficulty of achieving successful clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birngruber, R., 1980, Thermal modeling in biological tissues, in: “Lasers in Biology and Medicine,” F. Hillenkamp, R. Pratesi, C.A. Sacchi, eds., Plenum Publishing Co., pp. 77–97.

    Chapter  Google Scholar 

  • Chandrasekhar, S., 1960, “Radiative Transfer”, Dover Publications, New York.

    Google Scholar 

  • Cheong, W.F., Prahl, S.A., and Welch, A.J., 1990, A review of optical properties of biological tissue, Submitted.

    Book  Google Scholar 

  • Flock, S.T., Wilson, B.C., and Patterson, M.S., 1989, Monte Carlo modeling of light propagation in highly scattering tissues II: comparison with measurements in phantoms, IEEE Trans. Biomed Eng., BME36:1169.

    Article  Google Scholar 

  • van Gemert, M.J.C., de Kleijn, W.J.A., and Hulsbergen Henning, J.P., 1982, Temperature behaviour of a model port-wine stain during argon laser coagulation, Phys. Med. Biol., 27: 1089.

    Article  Google Scholar 

  • van Gemert, M.J.C., and Welch, A.J., 1989, Time constants in thermal laser medicine, Lasers Surg. Med., 9:405.

    Article  Google Scholar 

  • van Gemert, M.J.C., Jacques, S.L., Sterenborg, H.J.C.M., and Star, W.M., 1989, Skin optics, IEEE Trans. Biom. Eng., BME36:1146.

    Article  Google Scholar 

  • Henriques, F.C., 1947, Studies of thermal injury, Arch. Pathol., 43:4899.

    Google Scholar 

  • Henyey, L.G., and Greenstein, J.L., 1941, Diffuse radiation in the galaxy, Astrophys. J., 93:70.

    Article  ADS  Google Scholar 

  • Ishimaru, A., 1978, “Wave propagation and scattering in random media”, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Ishimaru, A., 1989, Diffusion of light in turbid material, Appl. Opt., 28:2210.

    Article  ADS  Google Scholar 

  • Jacques, S.L., Alter, C.A., and Prahl, S.A., 1987, Angular dependence of He-He laser light scattering by human dermis, Lasers Life Sci., 1:309.

    Google Scholar 

  • Keijzer, M., Jacques, S.L., Prahl, S.A., and Welch, A.J., 1989a, Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams, Lasers Surg. Med., 9:148.

    Article  Google Scholar 

  • Keijzer, M., Richards-Kortum, R. R., Jacques, S.L., and Feld, M.S., 1989b, Fluorescence spectroscopy of turbid media: autofluorescence of human aorta, Appl. Opt., 28:4286.

    Article  ADS  Google Scholar 

  • Lahaije, C.T.W., and van Gemert, M.J.C., 1985, Optical laser parameters for port wine stain therapy: a theoretical approach, Phys. Med. Biol., 30:573.

    Article  Google Scholar 

  • Moes, C.J.M., van Gemert, M.J.C., Star, W.M., Marijnissen, J.P.A. and Prahl, S.A., 1989, Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm, Appl. Opt., 28:2292.

    Article  ADS  Google Scholar 

  • Mordon, S.R., Cornil, A.H., Brunetaud, J.M., Gosselin, B., and Moschetto, Y., 1987. Nd-YAG laser thermal effect: comparative study of rat liver in vivo by continuous wave and high power pulsed lasers, Lasers Med. Sci., 2:285.

    Article  Google Scholar 

  • Parsa, P., Jacques, S.L., and Nishioka, N.S., 1989, Optical properties of rat liver between 350 and 2500 nm, Appl. Opt., 28:2325.

    Article  ADS  Google Scholar 

  • Prahl, S.A., 1988, Light transport in tissue, 1988, Ph.D. dissertation, University of Texas at Austin.

    Google Scholar 

  • Priebe, L.A., and Welch, A.J., 1978, Asymptotic rate process calculations of thermal injury to the retina following laser irradiation, J. Biomed. Eng., 100:49.

    Google Scholar 

  • Priebe, L.A. and Welch, A.J., 1979, A dimensionless model for the calculation of temperature increase in biologic tissues exposed to nonionizing radiation, IEEE Trans. Biomed. Eng., BME26:244.

    Article  Google Scholar 

  • Takata, A.N., 1974, Development of criterion for skin burns, Aerospace Med., 45:634.

    Google Scholar 

  • Valvano, J.W., and Chitsabesan, B., 1987, Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque, Lasers Life Sci., 1:219.

    Google Scholar 

  • Weinberg, W.S., Birngruber, R., and Lorenz, B., 1984, The change in light reflection of the retina during therapeutic laser photocoagulation, IEEE J. Quant. Electr., QE-20:1481.

    Article  ADS  Google Scholar 

  • Welch, A.J., Wissler, E.H., and Priebe, L.A., 1980, Significance of blood flow in calculations of temperature in laser irradiated tissue, Biomed. Eng., BME27:164.

    Google Scholar 

  • Welch, A.J., 1984, The thermal response of laser irradiated tissues, IEEE J. Quant. Elect., QE-20:1471.

    Article  ADS  Google Scholar 

  • Welch, A.J., and Polhamus, G.D., 1984, Measurement and prediction of thermal damage in the retina of the rhesus monkey, IEEE Trans. Biomed. Eng. BME31:633.

    Article  Google Scholar 

  • Wilson, B., and Adam, G., 1983, A Monte Carlo model for the absorption and flux distributions of light in tissue, Med. Phys., 10:824.

    Article  Google Scholar 

  • Wilson, B.C., Patterson, M.S., and Flock, S.T., 1987, Indirect versus direct techniques for the measurement of the topical properties of tissues, Photochem. Photobiol., 46:601.

    Article  Google Scholar 

  • Wissler, E.H., 1976, An analysis of choroid-retinal thermal response to intense light exposure, IEEE Trans. Biomed. Eng., BME23:207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Gemert, M.J.C., Welch, A.J. (1991). Optical and Thermal Modeling of Tissues: Dosimetry. In: Pratesi, R. (eds) Optronic Techniques in Diagnostic and Therapeutic Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3766-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3766-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6678-2

  • Online ISBN: 978-1-4615-3766-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics