Skip to main content

Role of Aldose Reductase and Effects of Aldose Reductase Inhibitors in Ocular Tissue Aging Phenomena in the Diabetic Rat

  • Chapter
  • 57 Accesses

Abstract

Studies of the role of aldose reductase in sugar cataractogenesis have been aided by the synthesis and characterization of inhibitors of this enzyme which can prevent lens opacification in galactosemic or diabetic rats1,2. The anti-cataract activity of aldose reductase inhibitors correlates with inhibition of polyol accumulation in the lenses of treated galactosemic or diabetic animals; in untreated diabetic rats, lens sorbitol levels may be elevated 100-fold over the normal value3. Hyperglycemia produces an increase in glucose content of tissues not responsive to insulin. Due to increased substrate availability, the rate of sorbitol formation by action of aldose reductase is greatly accelerated relative to conversion of this metabolite to fructose via sorbitol dehydrogenase1:

$$ Glucose\quad + \quad NADPH\quad + \quad {H^{ + }}\;\xrightarrow{{Aldose\,Reductase}}\;Sorbitol\quad + \quad NAD{P^{ + }} $$
(1a)
$$ Sorbitol\quad + \quad NA{D^{ + }}\;\xrightarrow{{Sorbitol\;Dehydrogenase}}\;Fructose\quad + \quad NADH\quad + \quad {H^{ + }} $$
(1b)

.

Since polyols such as sorbitol are poorly transported across cell membranes, an early effect of intracellular sorbitol accumulation appears to be increased osmolality1. Compensatory responses of cells to an osmotic insult include water uptake and swelling, which, if sustained chronically, produce membrane damage and other alterations that progress eventually to end-stage nuclear cataract1,2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.F. Kador, W.G. Robinson, Jr., and J.H. Kinoshita, 1979, The pharmacology of aldose reductase inhibitors, in: “Annual Review of Pharmacology and Toxicology,” R. George, R. Okun, and A.K. Cho, ed., Annual Reviews, Inc., Palo Alto, CA.

    Google Scholar 

  2. J.H. Kinoshita, S. Fukushi, P. Kador, and L.O. Merola, 1979, Aldose reductase in diabetic complications of the eye. Metabolism 28:462.

    Article  PubMed  CAS  Google Scholar 

  3. D. Dvornik, 1987, Aldose reductase inhibition. An approach to prevention of diabetic complications, D. Porte, Ed. New York, Biomedical Information Corp. (McGraw-Hill).

    Google Scholar 

  4. B.W. Griffin, M.L. Chandler, and L. DeSantis, 1984, Prevention of diabetic cataract and neuropathy in rats by two new aldose reductase inhibitors. Invest. Ophthalmol. Vis.Sci. 25 (Suppl):136.

    Google Scholar 

  5. M.L. Chandler, W.A. Shannon, and L. DeSantis, 1984, Prevention of retinal capillary basement membrane thickening in diabetic rats by aldose reductase inhibitors. Invest. Ophthalmol. Vis. Sci. 25 (Suppl):159.

    Google Scholar 

  6. W.G. Robison, Jr., P.F. Kador, Y. Akagi, J.H. Kinoshita, R. Gonzalez, and D. Dvornik, 1986, Prevention of basement membrane thickening in retinal capillaries by a novel inhibitor of aldose reductase, Tolrestat, Diabetes 35:295 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. J.R. Williamson and C. Kilo, 1976, Basement-membrane thickening and diabetic microangiopathy. Diabetes 25:925.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Akagi, P.F. Kador, T. Kuwabara, and J.H. Kinoshita, Aldose reductase localization in human retinal mural cells. Invest. Ophthalmol. Vis. Sci. 24:1516.

    Google Scholar 

  9. R.G. Tilton, L.S. LaRose, C. Kilo, and J.R. Williamson, 1986, Absence of degenerative changes in retinal and uveal capillary pericytes in diabetic rats. Invest. Ophthalmol. Vis. Sci. 27:716.

    PubMed  CAS  Google Scholar 

  10. L.C. MacGregor and F.M. Matschinsky, Treatment with aldose reductase inhibitor or with myo-inositol arrests deterioration of the electroretinogram of diabetic rats, J. Clin. Invest. 76:887.

    Google Scholar 

  11. S. Fukushi, L.O. Merola, M. Tanaka, M. Datiles, and J.H. Kinoshita, 1980, Reepithelialization of denuded corneas in diabetic rats, Exp. Eve Res. 31:611.

    Article  CAS  Google Scholar 

  12. L.A. Meyer, K.M. Foley, J.L. Ubels, and H.F. Edelhauser, 1986, Diabetes-induced corneal endothelial changes in rats. Invest.Ophthalmol. Vis. Sci. 27 (Suppl):175.

    Google Scholar 

  13. B.M. York, B.W. Griffin, J.A. Alvarado, R. Kurtz, and J.R. Polansky, 1986, Sorbitol accumulation by human trabecular meshwork cells cultured in high glucose medium and inhibition by potent aldose reductase inhibitors, 7th International Congress of Eye Research (Abstract), Nagoya.

    Google Scholar 

  14. O. Hockwin, U. Eckerskorn, W. Schmidtmann, V. Dragomirescu, I. Korte, and H. Laser, 1984, Epidemiological study of the association between lens cataract and case history, blood composition, and enzymes involved in lens carbohydrate metabolism. Lens Research 2:23.

    Google Scholar 

  15. H. Kuriyama, K. Sasaki, and M. Fukuda, 1983, Studies on diabetic cataract in rats induced by streptozotocin II. Biochemical examinations of rat lenses in relation to cataract stages. Ophthalmic Res. 15:191.

    Article  PubMed  CAS  Google Scholar 

  16. B.W. Griffin and L.G. McNatt, 1987, Measurement of the sorbitol pathway enzymes in tissues of normal and galactosemic rats. Invest. Ophthalmol. Vis. Sci. 28 (Suppl): 78.

    Google Scholar 

  17. R. Vracko, R.E. Pecoraro, and W.B. Carter, 1980, Thickness of basal lamina of epidermis, muscle fibers, muscle capillaries, and renal tubules: changes with aging and in diabetes mellitus, Ultrastruct. Path. 1:559.

    Article  CAS  Google Scholar 

  18. S. Hayman and J.H. Kinoshita, 1965, Isolation and proeprties of lens aldose reductase, J. Biol. Chem. 240:877.

    PubMed  CAS  Google Scholar 

  19. B.W. Griffin and L. M. McNatt, 1986, Characterization of the reduction of 3-acetylpyridine adenine dinucleotide phosphate by benzyl alcohol catalyzed by aldose reductase. Arch. Biochem. Biophys. 246:75.

    Article  PubMed  CAS  Google Scholar 

  20. J.I. Malone, G. Knox, S. Benford, and T.A. Tedesco, 1980, Red cell sorbitol. An indicator of diabetic control. Diabetes 29:861.

    Article  PubMed  CAS  Google Scholar 

  21. W.A. Sherman and M.A. Stewart, 1966, Identification of sorbitol in mammalian nerve, Biochem. Biophvs. Res. Commun. 22:492.

    Article  CAS  Google Scholar 

  22. W.A. Shannon, Jr., D.L. Rockholt, and S.B. Bates, 1982, Computer-assisted measurement of the thickness of biological structures, Comput. Biol. Med. 12:149.

    Article  PubMed  Google Scholar 

  23. Y. Akagi, Y. Yajima, P.F. Kador, T. Kuwabara, and J.H. Kinoshita, 1984, Localization of aldose reductase in the human eye. Diabetes 33:563.

    Article  Google Scholar 

  24. J.A. Jedziniak, L.T. Chylack, Jr., H.-M. Cheng, M.K. Gillis, A.A. Kalustian, and W.H. Tung, 1981, The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Invest. Ophthalmol. Vis. Sci. 20:314.

    PubMed  CAS  Google Scholar 

  25. B.W. Griffin, L.G. McNatt, M.L. Chandler, and B.M. York, 1987, Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats. Metabolism 36:486.

    Article  PubMed  CAS  Google Scholar 

  26. R. Kikkama, I. Hatamaka, H. Yasuda, N. Kobayashi, Y. Shigeta, H. Terashima, T. Morimura, and M. Tsuboshima, 1983, Effect of a new aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropenylidene] rhodanine (ONO-2235) on peripheral nerve disorders in streptozotocin-diabetic rats, Diabetologia 24:290.

    Google Scholar 

  27. N. Simard-Duquesne, E. Greselin, J. Dubuc, and D. Dvornik, 1985, The effects of a new aldose reductase inhibitor (Tolrestat) in galactosemic and diabetic rats. Metabolism 34:995.

    Article  Google Scholar 

  28. D. Stribling, D.J. Mirrlees, H.E. Harrison, and D.C.N. Earl, 1985, Properties of ICI 128,436, a novel aldose reductase inhibitor, and its effects on diabetic complications in the rat. Metabolism 34:336.

    Article  PubMed  CAS  Google Scholar 

  29. J.I. Malone, H. Leavengood, M.J. Peterson, M.M. O’Brien, M.G. Page, and C.E. Aldinger, 1984, Red blood cell sorbitol as an indicator of polyol pathway activity. Inhibition by Sorbinil in insulin-dependent diabetic subjects. Diabetes 33:45.

    Article  PubMed  CAS  Google Scholar 

  30. R.G. Tilton, P.F. Hoffman, C. Kilo, and J.R. Williamson, 1981, Pericyte degeneration and basement membrane thickening in skeletal muscle capillaries of human diabetics. Diabetes 30:326.

    PubMed  CAS  Google Scholar 

  31. W.G. Robison, Jr., P.F. Kador, and J.H. Kinoshita, 1983, Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221:1177.

    Article  PubMed  CAS  Google Scholar 

  32. J.R. Williamson, K. Chang, E. Rowold, J. Marvel, M. Tomlinson, W.R. Sherman, K.E. Ackermann, and C. Kilo, 1985, Sorbinil prevents diabetes-induced increases in vascular permeability but does not alter collagen cross-linking. Diabetes 34:703.

    Article  PubMed  CAS  Google Scholar 

  33. J.R. Williamson, K. Chang, E. Rowold, J. Marvel, M. Tomlinson, W.R. Sherman, K.E. Ackerman, and C. Kilo, 1986, Diabetes-induced increases in vascular permeability and changes in granulation tissue levels of sorbitol, myo-inositol, chiro-inositol, and scyllo-inositol are prevented by Sorbinil, Metabolism 35 (Suppl 1):41.

    Article  PubMed  CAS  Google Scholar 

  34. J.R. Williamson, K. Chang, R.G. Tilton, C. Prater, J.R. Jeffrey, C. Weigel, W.R. Sherman, D.M. Eades, and C. Kilo, 1987, Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozotocin-induced diabetes. Prevention by aldose reductase inhibitors and castration. Diabetes 36:813.

    Article  PubMed  CAS  Google Scholar 

  35. F.I. Caird, A. Ferie, T.G. Ramwell, 1969, The natural history of diabetic retinopathy, in Diabetes and the Eve, Oxford, UK, Blackwell, pp. 72–100.

    Google Scholar 

  36. R.N. Frank, 1984, On the pathogenesis of diabetic retinopathy. Ophthalmology 91:626.

    PubMed  CAS  Google Scholar 

  37. M. Sochar, S. Kunjara, A.L. Greenbaum, and P. McLean, Renal hypertrophy in experimental diabetes. Effect of diabetes on the pathways of glucose metabolism: differential response in adult and immature rats, Biochem. J. 234:573.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffin, B.W., Chandler, M.L., DeSantis, L., York, B.M. (1991). Role of Aldose Reductase and Effects of Aldose Reductase Inhibitors in Ocular Tissue Aging Phenomena in the Diabetic Rat. In: Armstrong, D., Marmor, M.F., Ordy, J.M. (eds) The Effects of Aging and Environment on Vision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3758-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3758-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6674-4

  • Online ISBN: 978-1-4615-3758-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics