Advertisement

Weak and Strong Turbulence in a Class of Complex Ginzburg Landau Equations

  • J. D. Gibbon
Part of the NATO ASI Series book series (NSSB, volume 268)

Abstract

Engineers tend to be interested mainly in results on real fluids and therefore have less interest in theoretical models other than the Navier Stokes equations. In contrast, physicists and applied mathematicians are more interested in the underlying mechanisms which cause and govern turbulence. This sometimes leads them to study idealised systems which are not wholly physical but which give a degree of insight into the mechanisms behind it. Only in 2 spatial dimensions are the incompressible Navier Stokes equations understood analytically in the sense that there is a rigorous proof of the existence of a finite dimensional global attractor. On a finite periodic domain, if G is the Grashof number, then it turns out1,2,3 that the dimension of the global attractor for the 2D Navier Stokes equations is bounded above by cG2/3(1 + logG)1/3 & below by cG2/3. Computational methods4 are generally good enough to resolve the smallest scale in a 2D flow and, for 2D homogeneous decaying turbulence, the vorticity obeys a maximum principle. No such maximum principle is known to exist in 3D & regularity remains to be proved in this case. Furthermore, numerical resolution of the smallest scale in a 3D flow is still a long way off.

Keywords

Navier Stoke Equation Inertial Range Inertial Subrange Incompressible Navier Stokes Equation Strong Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Libchaber: Proc. Royal Soc. London 413A, 63, (1987)MathSciNetADSGoogle Scholar
  2. A. Libchaber “From chaos to turbulence in Renard convection”, published in “Dynamical chaos”, p63, Princeton University Press 1987.Google Scholar
  3. 2.
    P. Constantin, C. Foias & R. Temam; Physica 30D, 284, (1988).MathSciNetADSGoogle Scholar
  4. 3.
    P. Constantin, C. Foias; The Navier Stokes equations, Chicago University Press (1989).Google Scholar
  5. 4.
    R. Temam; Infinite dimensional dynamical systems in mechanics & physics. Springer Applied Math Series 68, (1988).MATHCrossRefGoogle Scholar
  6. 5.
    N. O. Weiss; Proc. Royal Soc. London 413A, 71, (1987)ADSGoogle Scholar
  7. N. O. Weiss; “From chaos to turbulence in Benard convection”, published in “Dynamical chaos”, p71, Princeton University Press (1987).Google Scholar
  8. 6.
    A. Majda; Comm. Pure & Appl. Math. 39, 187–220, (1986).MathSciNetGoogle Scholar
  9. 7.
    C. Doering, J.D. Gibbon, D.D. Holm & B. Nicolaenko; Nonlinearity 1, 279–309, (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 8.
    C. R. Doering, J. D. Gibbon, D. D. Holm & B. Nicolaenko; Phys. Rev. Letts. 59, 2911–4, (1987).ADSCrossRefGoogle Scholar
  11. 9.
    M. J. Landman, G. C. Papanicalou, C. Sulem & P. L. Sulem; Phys. Rev. A38, 3837–43, (1988).ADSGoogle Scholar
  12. K. Rypdal, I Rasmussen & K. Thomsen; Physica 16D, 339, (1985).MathSciNetADSGoogle Scholar
  13. I. Rasmussen & K. Rypdal; Phys. Scr. 33, 481, (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  14. K. Rypdal & I. Rasmussen; Phys. Scr. 33, 498, (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  15. 10.
    M. Bartuccelli, P. Constantin, C. R.Doering, J. D. Gibbon & M. Gisselfält; Physica D, 44, 421–444, (1990)MathSciNetADSMATHCrossRefGoogle Scholar
  16. M. Bartuccelli, P. Constantin, C. R.Doering, J. D. Gibbon & M. Gisselfält; Phys. Letts. 142A, 349–56, (1989).ADSCrossRefGoogle Scholar
  17. 11.
    C. D. Doering, J. D. Gibbon & D. Levermore: “Weak and strong solutions of the CGL equation” preprint (1990).Google Scholar
  18. 12.
    C. D. Levermore; private communication.Google Scholar
  19. 13.
    C. Lange & A. C. Newell; SIAM J. Appl. Math. 27, 441–56, (1974).MathSciNetMATHCrossRefGoogle Scholar
  20. 14.
    L. Keefe; Stud. Appl. Math., 73, 91, (1985).MathSciNetADSMATHGoogle Scholar
  21. 15.
    L. Sirovich & J. Rodriguez; Phys. Lett. Al20, 211, (1988).MathSciNetGoogle Scholar
  22. 16.
    P. Coullet, L. Gil & J. Lega; Phys Rev Letts, 62, 1619–22, (1989).ADSCrossRefGoogle Scholar
  23. 17.
    L. Sirovich & P. K. Newton; Physica 21D, 115,25, (1986).MathSciNetGoogle Scholar
  24. 18.
    P. Constantin; “A construction of inertial manifolds”; Google Scholar
  25. P. Constantin; Contemporary Mathematics 99, 27, (1989) (Proc.AMS Summer School, Boulder 1987).Google Scholar
  26. 19.
    J-M Ghidaglia & B. Heron; 28D, 282, (1987).Google Scholar
  27. 20.
    F. Heslot, B. Castaing & A. Libchaber; Phys. Rev. A36, 5870–3, (1987).ADSGoogle Scholar
  28. 21.
    C. D. Doering, J. D. Gibbon, D. D. Holm, J. M. Hyman, C. D. Levermore & G. Kovacic; in preparation 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • J. D. Gibbon
    • 1
  1. 1.Department of MathematicsImperial CollegeLondonUK

Personalised recommendations