Vortex Dynamics and Turbulence

  • P. G. Saffman
Part of the NATO ASI Series book series (NSSB, volume 268)


We shall define Vortex Dynamics to be the study of laminar (i.e. non turbulent) solutions of the equations
$$ \frac{{\partial \omega }}{{\partial t}} + u \bullet \nabla \omega = - \omega \bullet \nabla u + \left( {v{\nabla ^2}\omega } \right) $$
$$ u = cur{l^{ - 1}}\omega $$
for which ω is compact. It is also implied that usually v ≪ 1.


Vortex Ring Vortex Tube Vortex Dynamic Vortex Sheet Inertial Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayly, B.J., 1986, Three-dimensional instability of elliptical flow, Phys. Rev. Lett., 57, 2160: 2163.MathSciNetADSGoogle Scholar
  2. Buntine, J.D., and Pullin, D.I., 1989, Merger and cancellation of strained vortices, J. Fluid Mech., 205, 263: 295.Google Scholar
  3. Corrsin, S., 1962, Turbulent dissipation fluctuations, Phys. Fluids 5, 1301: 1302.ADSGoogle Scholar
  4. Deem, G.S. and Zabusky, N.J., 1978, Vortex waves: stationary V states, interactions, recurrence, and breaking, Phys. Rev. Lett., 40, 859: 862.ADSGoogle Scholar
  5. Dritschel, D.G., 1988, The repeated filamentation of two-dimensional vorticity interfaces, J. Fluid Mech., 194, 511: 547.MathSciNetGoogle Scholar
  6. Kambe, T. and Takao, T., 1971, Motion of distorted vortex rings, J. Phys. Soc. Japan, 31, 591: 599.ADSGoogle Scholar
  7. Kelvin, Lord, 1880, Vibrations of a columnar vortex, Phil. Mag., (5) 10, 155: 168.Google Scholar
  8. Krutzsch, C.H., 1939, Über eine experimentell beobachtete Erscheinung an Wirbelringen bei ihrer translatorischen Bewegung in wirklichen Flussigkeiten, Ann. Phys., 35, 497: 523.Google Scholar
  9. Landman, M.J. and Saffman, P.G., 1987 On the 3-dimensional instability of vortices in a viscous fluid, Phys. Fluids, 30, 2339: 2342.ADSGoogle Scholar
  10. Lundgren, T. S., 1982, Strained spiral vortex model for turbulent fine structure, Phys. Fluids 25, 2193: 2203.ADSGoogle Scholar
  11. Melander, M.V., McWilliams, J.C. and Zabusky, N.J., 1987, Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech. 178, 137: 159.Google Scholar
  12. Moffatt, H.K., 1984, Simple topological aspects of turbulent vorticity dynamics. Turbulence and chaotic phenomena in fluids (Ed T. Tatsumi), 223:230, Elsevier.Google Scholar
  13. Moore, D.W., 1979, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. A, 365, 105: 119.Google Scholar
  14. Moore, D.W. and Saffman, P.G., 1971, Structure of a line vortex in an imposed strain. Aircraft wake turbulence and its detection, 339:354, Plenum press..Google Scholar
  15. Moore, D.W. and Saffman, P.G., 1975, The density of organized vortices in a turbulent mixing layer, J. Fluid Mech., 69, 465: 473.ADSGoogle Scholar
  16. Pierrehumbert, R.T., 1986, A universal shortwave instability of two-dimensional eddies in an inviscid fluid, Phys. Rev. Lett., 57, 2157: 2159.ADSGoogle Scholar
  17. Polvani, L.M., Flierl, G.R., and Zabusky, N.J., 1989, Filamentation of unstable vortex structures via separatrix crossing: A quantitative estimate of onset time, Phys. Fluids, A1, 181: 184.MathSciNetADSGoogle Scholar
  18. Pullin, D.I., 1981, The nonlinear behavior of a constant vorticity interface at a wall, J. Fluid Mech., 108, 401: 421.MathSciNetADSGoogle Scholar
  19. Pullin, D.I., 1989, On similarity flows containing two-branched vortex sheets. Mathematical aspects of vortex dynamics (Ed R Caflisch), SIAM 97: 106.Google Scholar
  20. Pullin, D.I., Jacobs, P.A., Grimshaw, R.H.J. and Saffman, P.G., 1989, Instability and filamentation of finite-amplitude waves on vortex layers of finite thickness. J. Fluid Mech, 209, 359: 384.MathSciNetGoogle Scholar
  21. Pullin, D.I. and Moore, D. W., 1990, Remark on a result of D. Dritschel. Phys. Fluids, to appear.Google Scholar
  22. Pumir, A. and Siggia, E. 1990, Collapsing solutions to the 3-D Euler equations, Phys. Fluids, A2, 220: 241.MathSciNetGoogle Scholar
  23. Roberts, K.V. and Christiansen, J.P., 1972, Topics in computational fluid mechanics, Comput. Phys. Commun, 3(supp), 14: 32.Google Scholar
  24. Robinson, A.C. and Saffman, P.G., 1982, Three-dimensional stability of vortex arrays, J. Fluid Mech., 125, 411: 427.MathSciNetGoogle Scholar
  25. Robinson, A.C. and Saffman, P.G., 1984, Stability and structure of stretched vortices, Stud. App. Math., 70, 163: 181.MathSciNetGoogle Scholar
  26. Saffman, P.G., 1966, Lectures on homogeneous turbulence, Topics in nonlinear physics (Ed N. Zabusky), 485:614. Springer Verlag.Google Scholar
  27. Saffman, P.G., 1981, Vortex interactions and coherent structures in turbulence, Transition and Turbulence (Ed R.E. Meyer), 149:166. Academic Press.Google Scholar
  28. Saffman, P.G., 1990, A model of vortex reconnection, J. Fluid Mech., 212, 395: 402.MathSciNetADSGoogle Scholar
  29. Schatzle, P.R., 1987, An experimental study of fusion of vortex rings, Ph. D. thesis. Caltech.Google Scholar
  30. Scorer, R.S. and Davenport L.J., 1970, Contrails and aircraft downwash. J. Fluid Mech., 43, 451: 464.Google Scholar
  31. Synge, J.L., and Lin, C.C. 1943, On a statistical model of isotropic turbulence, Trans. Roy. Soc. Canada, 37, 45: 79.MathSciNetGoogle Scholar
  32. Tennekes, H., 1968, Simple model for the small-scale structure of turbulence, Phys. Fluids, 11, 669: 670.ADSGoogle Scholar
  33. Townsend, A.A., 1951, On the fine scale structure of turbulence, Proc. Roy. Soc. A, 208, 534: 542.ADSGoogle Scholar
  34. Vincent, A. and Meneguzzi, M., 1990, The spatial structure and statistical properties of homogeneous turbulence, submitted, J. Fluid Mech.Google Scholar
  35. Widnall, S.E., Bliss, D.B. and Tsai, C-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 35: 47.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. G. Saffman
    • 1
  1. 1.Applied Mathematics 217-50California Institute of TechnologyPasadenaUSA

Personalised recommendations