Advertisement

Towards a Quantitative Ultrasonic NDE of Thick Composites

  • Wolfgang Sachse
Chapter

Abstract

Because composite materials can be designed and fabricated to obtain specific mechanical properties at minimum weight, considerable effort has been placed on the application of thick composite materials to fabricate primary structural elements in high-performance systems such as solid rocket motors and submersible vessels. This requires composite materials which range in thickness from 1 to 8 in. and whose integrity must be assured. Thus, adequate nondestructive techniques must be available for the inspection of such materials and structures. If ultrasonic techniques can developed that will permit a non-destructive determination of the elastic properties and the detection of material inhomogeneities and flaws in these materials, they will play an essential role.

Keywords

Residual Stress Ultrasonic Signal Ultrasonic Attenuation Ultrasonic Technique Solid Rocket Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Murri and B. W. Sermon, “NDE of thick graphite/epoxy composites: Some approaches and problems”, in Review of Quantitative Nondestructive Evaluation, 8B, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, New York (1988), pp. 1511–1518.Google Scholar
  2. 2.
    R. F. Murphy and R. W. Reed, “Multiparameter ultrasonic evaluation of composite materials”, in Proceedings 20th International SAMPE Technical Conference, H. L. Chess, S. P. Prosen, J. W. Davis and J. A. Heth, Eds., Soc. Adv. Matl. Proc. Eng., Covina, CA (1988), pp. 481–489.Google Scholar
  3. 3.
    R. F. Murphy, R. W. Reed and T. J. Batzinger, “Multiparameter ultrasonic evaluation of thick composite materials”, in Review of Quantitative Nondestructive Evaluation, 9B, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, New York (1989), pp. 1473–1480.Google Scholar
  4. 4.
    Y. Bar-Cohen and A. K. Mal, “Leaky Lamb wave phenomena in composites using pulses”, in Review of Quantitative Nondestructive Evaluation, 8B, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, New York (1988), pp. 1671–1677.Google Scholar
  5. 5.
    V. L. Newhouse and E. S. Furgason, “Ultrasonic Correlation Techniques”, Chapt. 3 in Research Techniques in Nondestructive Testing, Vol. 3, R. S. Sharpe, Ed., Academic Press, London (19977), pp. 101–134.Google Scholar
  6. 6.
    R. C. Heyser, “Determination of loudspeaker signal arrival times; Part I; Part III”, J. Audio Eng. Soc., 19, 734–743; 902-905 (1971).Google Scholar
  7. 7.
    P. Gammell, “Time and frequency domain measurements of materials with high ultrasonic attenuation using time delay spectroscopy”, in Review of Quantitative Nondestructive Evaluation, 5A, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, New York (1985), pp. 759–765.Google Scholar
  8. 8.
    G. J. Posakony, Unpublished Internal Report, Battelle Pacific Northwest Laboratory, Richland, WA (1980). Private communication.Google Scholar
  9. 9.
    P. Cielo, F. Nadeau and M. Lamontagne, “Laser generation of convergent acoustic waves for materials inspection”, Ultrasonics, 23, 55–62 (1989).CrossRefGoogle Scholar
  10. 10.
    E. Madaras, “Using a large aperture, phase insensitive array transducer to improve ultrasonic detection of disbonds at a rough interface”, in Review of Quantitative Nondestructive Evaluation, 8B, D. O. Thompson and D. E. Chimenti, Eds., Plenum Press, New York (1988), pp. 921–928.Google Scholar
  11. 11.
    W. Sachse and K. Y. Kim, “Point-source/point-receiver materials testing”, in Ultrasonic Materials Characterization II, J. Boussière, J. P. Monchalin, C. O. Ruud and R. E. Green, Eds., Plenum Press, New York (1987), pp. 707–715.Google Scholar
  12. 12.
    W. Sachse and K. Y. Kim, “Quantitative acoustic emission and failure mechanics of composite materials”, Ultrasonics, 25, 195–203 (1987).CrossRefGoogle Scholar
  13. 13.
    W. Sachse, B. Castagnede, I. Grabec, K. Y. Kim and R. L. Weaver, “Recent developments in quantitative ultrasonic NDE of composites”, Ultrasonics, 28, 97–104 (1990).CrossRefGoogle Scholar
  14. 14.
    W. Sachse, “Transducer considerations for point-source/point-receiver materials measurements”, in Ultrasonics International’87 — Conference Proceedings, But-terworths, Guildford, UK (1987), pp. 495–501.Google Scholar
  15. 15.
    R. L. Weaver, W. Sachse and L. Niu, “Transient ultrasonic waves in a viscoelastic plate; Part I. Theory; Part II. Applications to materials characterization”, J. Acoust. Soc. Am., 85(6), 2255–2261; 2262-2267 (1989).CrossRefGoogle Scholar
  16. 16.
    A. G. Every, W. Sachse and M. O. Thompson, “Materials characterization from elastic wave anisotropy images”, in Non-destructive Characterization of Materials, IV, C. O. Ruud and R. E. Green, Jr., Eds., Plenum Press, New York (1990). In Press.Google Scholar
  17. 17.
    W. Sachse, A. G. Every and R. L. Weaver, “Interpretation of Ultrasonic PS/PR Data”, Materials Science Center Report #7067, Cornell University, Ithaca, NY (November 1990). In these proceedings.Google Scholar
  18. 18.
    A. G. Every, W. Sachse, K. Y. Kim and L. Niu, “Determination of elastic constants of anisotropic solids from group velocity data”, Materials Science Center Report #7025, Cornell University, Ithaca, NY (September 1990). In these proceedings.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Wolfgang Sachse
    • 1
  1. 1.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations