Advertisement

Elastic Characterization of Orthotropic Composite Materials from Ultrasonic Inspection through Non-Principal Planes

  • Bernard Hosten
Chapter

Abstract

Transmission of bulk ultrasonic waves through materials immersed in water is a well appropriated method to measure the stiffness matrix of anisotropic composite materials. This matrix can be deduced from velocities measurements by simple [1,2,3] or double transmission [4,5] or from amplitudes of double reflected bulk waves [4]. All these methods are working very well for unidirectional composites when transverse isotropy is assumed and the stiffness matrix has only five independent elastic constants.

Keywords

Stiffness Matrix Bulk Wave Unidirectional Composite Ultrasonic Inspection Warp Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Hosten, A. Barrot et J. Roux. “Interférométrie numérique ultrasonore pour la détermination de la matrice de raideur des matériaux composites” Acustica (1983) vol.53, No4, p.212–217Google Scholar
  2. 2.
    B. Hosten, M. Deschamps and B.R. Tittmann. “Inhomogeneous wave generation and propagation in lossy anisotropic solids. Application to the viscoelastic characterization of composite materials” J. Acoust. Soc. Am. (1987) Vol.82, N.5 pp. 1763/1770CrossRefGoogle Scholar
  3. 3.
    B. Castagnède, J. Roux and B. Hosten. “Correlation method for normal mode tracking in anisotropic media using an ultrasonic immersion system.” Ultrasonics September 1989 Vol.27 pp.280–287CrossRefGoogle Scholar
  4. 4.
    S.I. Rokhlin and W. Wang. “Nondestructive measurements of elastic constants of composite materials by ultrasonic method.” IUTAM Symposium (Boulder Colorado) 1989. Published in: “Elastic Waves and Ultrasonic Nondestructive Evaluation” Elsevier Science Publishers B.V. (North-Holland), 1990Google Scholar
  5. 5.
    B. Hosten. “Anisotropic Materials Characterization by Simple or Double Transmission Ultrasonic Method.” Proceeding of Ultrasonics 89 Madrid, 4/7 Juillet 1989. pp 3136Google Scholar
  6. 6.
    S. Baste et B. Hosten. “Evaluation de la matrice d’élasticité des composites orthotropes par propagation ultrasonore en dehors des plans principaux de symétrie”. Revue de Phys. Appl. 25 (1990) 161–168CrossRefGoogle Scholar
  7. 7.
    B. Hosten. “Reflection and transmission of acoustic plane waves on an immersed orthorhombic and viscoelastic solid layer. ”(Submitted to J.Acoust.Soc.Am.)Google Scholar
  8. 8.
    B.A. Auld. Acoustic Fields and waves in Solids (Wiley-Interscience, New York, 1973), Vol.1.Google Scholar
  9. 9.
    B. Hosten and B.R. Tittmann. “Elastic anisotropy of carbon-carbon composites during the fabrication process.” Proc. of Ultrasonics Symposium (IEEE 1986) Williamsburg Nov. 17-19Google Scholar
  10. 10.
    R.E1 Guerjouma and S. Baste. “Evaluation of anisotropic damage in ceramic-ceramic (SIC_SIC) composites by ultrasonic method.” Proc. of Ultrasonics 89 Madrid, 4/7 July 1989. pp.895-900Google Scholar
  11. 11.
    S.W. Tsai. Composites Design. (Third edition. Think Composites 1987).Google Scholar
  12. 12.
    S. Parchuri and J.J. Engblom. “Determination of the orthotropic material properties of a fiber-reinforced composite laminate” Proc. of Composite Material Technology ASME 13th ETCE New-Orleans 1990Google Scholar
  13. 13.
    A.H. Nayfeh, D.E. Chimenti. “Ultrasonic wave reflection from liquid-coupled orthotropic plates with application to fibrous composites.” J of Applied mechanics (1988) Vol.55 pp.863–870CrossRefGoogle Scholar
  14. 14.
    S.K. Datta, A.H. Shah, R.L. Bratton and T. Chakraborty. “Wave propagation in laminated composite plates.” J.Acoust.Soc.Am (1988) 83(6) pp.2020/2026CrossRefGoogle Scholar
  15. 15.
    S. Baste and A.Gérard. “Off-Diagonal elastic constant and anisotropic damage ” Proc. of Composite Material Technology ASME 13th ETCE New-Orleans 1990 pp.71-76Google Scholar
  16. 16.
    B. Hosten et B. Castagnède. “Optimisation du calcul des constantes élastiques à partir des mesures de vitesses d’une onde ultrasonore”. C.R. Acad.Sc.Paris (1983) t.296, Série H, 7/fév./, p.297–300zbMATHGoogle Scholar
  17. 17.
    S. Baste, M. Deschamps “Identification des constantes d’élasticité à partir des vitesses de propagation dans un plan principal de symétrie”. C. R. Acad. Sci. Paris, t309, Serie H, p. 1521-1526Google Scholar
  18. 18.
    B. Castagnéde and W. Sachse “Optimized determination of elastic constants of anisotropic solids from wavespeed measurements”, in Review of progress in QNDE, D.O. Thompson and D. E. Chimenti, Eds., Plenum Press, New York, Vol. 8b, pp.1855–1862, 1989Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bernard Hosten
    • 1
  1. 1.Laboratoire de Mécanique Physique, URA C.N.R.S. n° 867Université de Bordeaux ITALENCE CedexFrance

Personalised recommendations