Low-Temperature Photothermal Measurements of High-TC Superconductors

  • J. T. Fanton
  • A. Kapitulnik
  • B. T. Khuri-Yakub
  • G. S. Kino


Thermal conductivity provides important information on the scattering mechanisms in a material. In anisotropic materials, such as the high-temperature superconductors, the thermal conductivity depends on the anisotropy of both the charge carriers and the lattice contribution. The conductivity also depends intimately on the nature of the electron-phonon interactions which are a major source of the scattering. Since the electron-phonon interaction also plays a critical role in the Bardeen, Cooper, and Schrieffer (BCS) theory of superconductivity, measurements of the thermal conductivity can provide insight into the superconducting mechanism.


Thermal Conductivity Thermal Anisotropy Thermodynamic Fluctuation Spot Width Superconducting Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Uher and A. B. Kaiser, “Thermal Transport Properties of YBa2Cu3O7 Superconductors,” Phys. Rev. B 36(10), 5680 (1987).CrossRefGoogle Scholar
  2. 2.
    D. T. Mirelli, J. Heremans, and D. E. Swets, “Thermal Conductivity of Superconductive Y-Ba-Cu-O,” Phys. Rev. B 36(7), 3917 (1987).CrossRefGoogle Scholar
  3. 3.
    C. Uher and W.-H. Huang, “Thermoelectric Power and Thermal Conductivity of Neutron-Irradiated YBa2Cu3O7-δ,” Phys. Rev. B 40(4), 2694 (1989).CrossRefGoogle Scholar
  4. 4.
    L. Tewordt and Th. Wölkhausen, “Theory on Thermal Conductivity of the Lattice for High-TC Superconductors,” Solid State Comm. 70(8), 839 (1989).CrossRefGoogle Scholar
  5. 5.
    J. Bardeen, G. Rickayzen, and L. Tewordt, “Theory of the Thermal Conductivity of Superconductors,” Phys. Rev. 113(4), 982 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. T. Fanton, “Analysis and Applications of Photothermal Microscopy,” Ph.D. Dissertation, Stanford University, 1990.Google Scholar
  7. 7.
    R. A. Fisher et al, “Specific Heat Measurements on Superconducting Bi-Ca-Sr-Cu and Tl-Ca-Ba-Cu Oxides: Absence of a Linear Term in the Specific Heat of Bi-Ca-Sr-Ca,” Phys. Rev. B 38(16), 11942 (1988).CrossRefGoogle Scholar
  8. 8.
    Aharon Kapitulnik, M. R. Beasley, C. Castellani, and C. Di Castro, “Thermodynamic Fluctuations in the High-TC Perovskite Superconductors,” Phys. Rev. B 37(1), 537 (1988).CrossRefGoogle Scholar
  9. 9.
    M. Ausloos and Ch. Laurent, “Thermodynamic Fluctuations in the Superconductor Y1Ba2Cu3O9-y. Evidence for Two-Dimensional Superconductivity,” Phys. Rev. B 37(4) 611 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. T. Fanton
    • 1
    • 2
  • A. Kapitulnik
    • 1
  • B. T. Khuri-Yakub
    • 1
  • G. S. Kino
    • 1
  1. 1.Edward L. Ginzton Laboratory, W. W. Hansen LaboratoriesStanford UniversityStanfordUSA
  2. 2.ThermaWave Inc.FremontUSA

Personalised recommendations