Skip to main content

Detection of Viral Nucleic Acids by Qβ Replicase Amplification

  • Chapter
Medical Virology 10

Abstract

The need for clinical assays of exquisite sensitivity is well established. For example, the ability to detect reliably a single infected cell present in a sample is critical in screening blood supplies for human immunodeficiency virus type 1 (HIV-1). Direct detection of nucleic acid sequences specific for the pathogen circumvents several problems associated with other assay methods. First, isolation of the organism responsible for an infection is not always possible. Second, antigen levels may be extremely low in the initial stages of infection. Finally, indirect detection is complicated by antibody titers that may be low and that may fluctuate during the course of infection. A number of methods for direct detection of low levels of particular nucleic acids have been described. Prominent among these are: the polymerase chain reaction (PCR) (Saiki et al. 1988) the transcription-based amplification system (TAS) (Kwoh et al. 1989); and the ligase chain reaction (LCR) (Backman and Wang, 1989). We have explored an alternative method of signal amplification which employs Qβ replicase to exponentially amplify probe molecules that have been bound to target nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backman K and Wang C (1989) Method for detecting a target nucleic acid sequence. European Patent Application #0/320308.

    Google Scholar 

  • Carter W, Brodsky I, Pellegrino M, Henriques H, Parenti D, Schulof R, Robinson W, Volsky D, Paxton H, Kariko K, Suhadolnik R, Strayer D, Lewin M, Einck L, Simon G, Scheib R, Monefiori D, Mitchell W, Paul D, Meyer W, Reichenbach N and Gillespie D (1987) Clinical, immunological, and virological effects of ampligen, a mismatched double-stranded RNA, in patients with AIDS or AIDS-related complex. Lancet 6: 1286–1292.

    Article  Google Scholar 

  • DiFrancesco R (1989) Purification of Qβ replicase. US Patent Application Number 07/364,306.

    Google Scholar 

  • Eoyang L and August J (1971) Qβ RNA polymerase from phage Qβ-infected E. coli. In: Cantoni G and Davis D (eds.), Procedures in Nucleic Acid Research New York: Harper and Row. Vol. 2: 829–842.

    Google Scholar 

  • Gillespie D, Thompson J, and Solomon R (1989) Probes for quantitating sub-picogram amounts of HIV-1 RNA by molecular hybridization. Mol Cell Probes 3: 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Haruna I and Spiegelman S (1965a) Specific template requirements of RNA replicases. Proc Natl Acad Sci USA 54: 579–587.

    Article  Google Scholar 

  • Haruna I, and Spiegelman S (1965b) Recognition of size and sequence by an RNA replicase. Proc Natl Acad Sci USA 54: 1189–1193.

    Article  Google Scholar 

  • Hewlett I, Gregg R, Ou C, Hawthorne C, Mayner R, Schumacher R, Schochetman G and Epstein J (1988) Detection in plasma of HIV-1 specific DNA and RNA by polymerase chain reaction before and after seroconversion. J Clin Immunoassay 11: 161–166.

    Google Scholar 

  • Hunsaker W, Badry H, Lombardo M and Collins M (1989) Nucleic acid hybridization assays employing dA-tailed capture probes II. Advanced multiple capture methods. Anal Biochem 181: 360–370.

    Article  PubMed  CAS  Google Scholar 

  • Kacian D, Mills D, Kramer F and Spiegelman S (1972) A replicating RNA molecule suitable for detailed analysis of extracellular evolution and recombination. Proc Natl Acad Sci USA 69: 3038–3042.

    Article  PubMed  CAS  Google Scholar 

  • Kwoh D, Davis G, Whitfield K, Chappelle H, DiMichele L and Gingeras T (1989) Transcription-based amplification system and detection of amplified human immunodeficiency type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA 86: 1173–1177.

    Article  PubMed  CAS  Google Scholar 

  • Lizardi P, Guerra C, Lomeli H, Tussie-Luna I and Kramer F (1988) Exponential amplification of recombinant-RNA hybridization probes. Biotechnology 6: 1197–1202.

    Article  CAS  Google Scholar 

  • Lomeli H, Tyagi S, Pritchard C, Lizardi P and Kramer F (1989) Quantitative assays based on the use of replicatable hybridization probes. Clin Chem 35: 1826–1830.

    PubMed  CAS  Google Scholar 

  • Ma X, Sakai K, Sinangil F, Golub E, Volsky D (1990) Interaction of a non-cytopathic human immunodeficiency virus type 1 (HIV-1) with target cells: efficient virus entry followed by delayed expression of its RNA and protein. Virology 176:184–194..

    Article  PubMed  CAS  Google Scholar 

  • Mills D (1988) Engineered recombinant messenger RNA can be replicated and expressed inside bacterial cells by an RNA bacteriophage replicase. J Mol Biol 200: 489–493.

    Article  PubMed  CAS  Google Scholar 

  • Mills D, Kramer F, Dobkin C, Nishihara T and Spiegelman S (1975) Nucleotide sequence of microvariant RNA: another small replicating molecule. Proc Natl Acad Sci USA 72:4252–4256.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey D and Collins M (1989) Nucleic acid hybridization assays employing dA-tailed capture probes. Single capture methods. Mol Cell Probes 3: 189–207.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey D, Lombardo M, Eldredge J, Kearny K, Groody P and Collins M (1989) Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Anal Biochem 181: 345–359.

    Article  PubMed  CAS  Google Scholar 

  • Nelson T and Brutlag D (1979) Addition of homopolymers to the 3′ ends of duplex DNA with terminal transferase. Methods in Enzymology 68: 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Pelligrino M, Lewin M, Meyer W, Lanciotti R, Bhaduri-Hauck L, Volsky D, Sakai K, Folks T and Gillespie D (1989) A sensitive solution hybridization technique for detecting RNA in cells. Biotechniques 5: 452–459.

    Google Scholar 

  • Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, Mullis K and Erlich H (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Schaffner W, Ruegg, K and Weissman C (1977) Nanovariant RNAs: nucleotide sequence and interaction with bacteriophage Qβ replicase. J Mol Biol 117: 877–907.

    Article  PubMed  CAS  Google Scholar 

  • Speigelman S, Pace N, Mills D, Levisohn R, Eikhom T, Taylor M, Peterson R and Bishop D (1968) The mechanism of RNA replication. Cold Spring Harbor Symp Quant Biol 33: 101–124.

    Article  Google Scholar 

  • Thompson J and Gillespie D (1987) Molecular hybridization with RNA probes in concentrated solutions of guandine thiocyanate. Anal Biochem 163: 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Weissman C, Feix G and Slor H (1968) In vitro synthesis of phage RNA: the nature of the intermediates. Cold Spring Harbor Symp Quant Biol 33: 83–100.

    Article  Google Scholar 

  • Zucker M and Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nuc Acids Res 9: 133–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pritchard, C.G., Stefano, J.E. (1991). Detection of Viral Nucleic Acids by Qβ Replicase Amplification. In: de la Maza, L.M., Peterson, E.M. (eds) Medical Virology 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3738-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3738-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6664-5

  • Online ISBN: 978-1-4615-3738-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics