Advertisement

Photobiology pp 795-806 | Cite as

Model System Studies on Photosensitization in Light Scattering Media

  • L. I. Grossweiner
  • M. J. Schifano
  • J. L. Karagiannes
  • Z. Zhang
  • Q. A. Blan

Abstract

Biological photosensitization is being investigated in tissue models consisting of a sensitizing dye, a biological target, and light scattering particles. Results are reported for a dihematoporphyrin ether-subtilisin Carlsberg-polystyrene microsphere system in which the rate of photodynamic enzyme inactivation was measured at different wavelengths and scatterer concentrations. The optical constants were calculated with the one-dimensional diffusion approximation, from flux profiles measured with a fiber optic probe. Preliminary results arereported on lipid peroxidation in a dihematoporphyrin ether-liposome-polystyrene microsphere system. A two-channel integrating sphere spectrophotometer with on-line computer data acquisition was used to determine the optical constants of several model systems.

Keywords

Methylene Blue Optical Constant Tissue Model Polystyrene Microsphere Incident Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnfield, M. R., Tulip, J., and McPhee, M. S., 1988, IEEE Trans. Biomed. Eng., 35, 372.PubMedCrossRefGoogle Scholar
  2. Blan, Q. A. and Grossweiner, L. I., 1987, Photocnem. Photobiol., 45, 77.Google Scholar
  3. Bohren, C. F. and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, (New York: John Wiley & Sons).Google Scholar
  4. Bruis, W. W. G. and van der Leun, J. C., 1984, Photochem. Photobiol., 40, 231.CrossRefGoogle Scholar
  5. Butler, W. L. and Norris, K. L., 1960, Arch. Biochem. Biophys., 87, 31.PubMedCrossRefGoogle Scholar
  6. Chandrasekhar, S., 1950, Radiative Transfer (Oxford: Oxford University Press).Google Scholar
  7. Cubeddu, R., Keir, W. F., Ramponi, R., and Truscott, T. G., 1987, Photochem. Photobiol., 46, 633.PubMedCrossRefGoogle Scholar
  8. Erefai, S. and Profio, S., 1985, Med. Phys., 12, 393.CrossRefGoogle Scholar
  9. Goyal, G. C., Blum, A., and Grossweiner, L. I., 1983, Cancer Res., 43, 5826.PubMedGoogle Scholar
  10. Groenhuis, R. A. J., Ferwerda, H. A., and Ten Bosch, J. J., 1983, Applied Optics, 22, 2456.PubMedCrossRefGoogle Scholar
  11. Grossweiner, L. I. and Messina, J. W., 1987, Photochem.Photobiol., 45, 617.PubMedCrossRefGoogle Scholar
  12. Ishimaru, A., 1978 Wave Propagation and Scattering in Random Media, Vol.1 (New York: Academic Press).Google Scholar
  13. Jacques, S. L. and Prahl, S. A., 1987, Lasers Surg. Med, 6, 494.PubMedCrossRefGoogle Scholar
  14. Jacques, S. L., Alter, C. A., and Prahl, S. A., 1987, Lasers Life. Scis., 1, 309.Google Scholar
  15. Karagiannes, J. L., Zhang, Z., Grossweiner, B., and Grosswiener, L.I., 1989, Applied Optics, 28, 2311.PubMedCrossRefGoogle Scholar
  16. Kerker, M., 1969, The Scattering of Light, (New York: Academic Press).Google Scholar
  17. Kortum, G., 1969, Reflectance Spectroscopy, (Berlin: Springer-Verlag).CrossRefGoogle Scholar
  18. Schifano, M. J. and Grossweiner, L. I., 1988, Photochem. Photobiol., in press.Google Scholar
  19. Star, W. M., Marihnissen, J. P. A., and van Gemert, J. P. A., 1987, J. Photochem. Photobiol., 1B, 149.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • L. I. Grossweiner
    • 1
    • 2
  • M. J. Schifano
    • 1
    • 2
  • J. L. Karagiannes
    • 1
    • 2
  • Z. Zhang
    • 3
  • Q. A. Blan
    • 4
  1. 1.Biophysics LaboratoryPhysics Department Illinois Institute of Technology ChicagoIllinoisUSA
  2. 2.Wenske Laser CenterRavenswood Hospital Medical Center ChicagoIllinoisUSA
  3. 3.Northwestern Telecommunication Engineering InstituteXianChina
  4. 4.St. Xaviar CollegeChicagoIllinoisUSA

Personalised recommendations