Skip to main content

The Supramolecular Structure of the Light-Harvesting System of Cyanobacteria and Red Algae

  • Chapter
Book cover Photobiology

Abstract

Cyanobacteria including prochloron like organisms were the only procaryotes, which developed oxygenic photosynthesis. Once established the photosynthetic electron transport chain has not changed essentially during evolution to algae and higher plants. However major differences were introduced by the development of specialized light harvesting pigments, which adapt the photosynthetic apparatus of the different organisms to the changing light climates, especially to changes in light quantity and quality (Anderson, 1986). These light harvesting pigments or light harvesting antennae capture light over a large range of the spectrum and transfer the excitation energy in an energetic cascade finally to the photosynthetic reaction centres where chemical events start. Thereby they increase the photosynthetic efficency of the reaction centres to fully utilize the capacity of the electron-transport chain and that of the carbon dioxide fixation system and thus allow life in ecological niches under limited and unfavourabe conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.M. (1986) Ann. Rev. Plant Physiol. 37, 93–136

    Article  CAS  Google Scholar 

  • Anderson, L.K., M.C. Rayner and F.A. Eiserling (1984) Arch. Microbiol 138, 237–243

    Article  CAS  Google Scholar 

  • Blankenship, R.E. and R.C. Fuller (1986) In: Encyclopedia of Plant Physiology, New Series,Vol. 19 (Edited by L.A. Staehelin and C. J. Amtzen) pp. 390–399. Springer, Berlin.

    Google Scholar 

  • Gantt, E. (1980) Int. Rev. Cytol.66, 45–79

    Article  CAS  Google Scholar 

  • Giddings, T.H., C. Wasman and L.A. Staehelin (1983) Plant. Physiol. 71, 409–419

    Article  PubMed  CAS  Google Scholar 

  • Glazer, A.N. (1983) Ann. Rev. Biochem. 52, 125–157

    Article  PubMed  CAS  Google Scholar 

  • Glazer, A.N. (1984) Biochim. Biophys. Acta 768, 29–51

    Article  CAS  Google Scholar 

  • Glazer, A.N. (1985) Ann. Rev.Biophys. Biophys. Chem. 14, 47–77

    Article  CAS  Google Scholar 

  • Holzwarth, A.R.(1986) In: Antennas and Reaction Centers of Photosynthetic Bacteria (EditedbyM.E.Michel- Beyerle) pp. 45–52. Springer, Berlin.

    Google Scholar 

  • Ley, A.C. and W.L. Butler (1977) Biochim. Biophys. Acta 462, 290–294

    Article  PubMed  CAS  Google Scholar 

  • Larkum, A.W.D. and J. Barrett, (1983) Adv. Bot. Res. 10, 1–219

    Article  CAS  Google Scholar 

  • Mörschel, E., K.P. Koller and W. Wehrmeyer (1980a) Arch. Microbiol. 125, 43–51

    Article  Google Scholar 

  • Mörschel, E. and K. Mühlethaler (1983) Planta 158, 451–457

    Article  Google Scholar 

  • Mörschel, E. and E. Rhiel (1987) In: Electron Microscopy of Proteins 6. Membraneous Structures (Edited by J.R. Harris and R.W.Horne) pp.209–254. Academic Press, London, New York.

    Google Scholar 

  • Mörschel, E. and H.-G. Schatz (1987) Planta 172, 145–154 Mörschel, E., W. Wehrmeyer and K.-P. Koller (1980b) Eur. J. Cell Biol 21, 319–327

    Google Scholar 

  • Neushul, M. (1970) Am. J. Bot. 57, 1231–1239

    Article  Google Scholar 

  • Ohki, K. and Y. Fujita (1987) In: Progress in Photosynthesis Research 2 (Edited by J. Biggins) pp. 157–160 Martinus Nijhoff, Dortrecht.

    Chapter  Google Scholar 

  • Rümbeli, R. and H. Zuber (1988) In: Photosynthetic light-harvesting systems (Edited by H. Scheer and S. Schneider) pp. 61–70. De Gruyter, Berlin, New York.

    Google Scholar 

  • Scheer, H. (1981) Angew. Chem. Int. Ed. 93, 241–261

    Google Scholar 

  • Schirmer, T., R. Huber, M. Schneider, W. Bode, M. Miller and M. L. Hackert (1986) J. Mol. Biol. 188, 651–676

    Article  PubMed  CAS  Google Scholar 

  • Tandeau de Marsac, N. (1983) Bull. L’Inst. Pasteur 81, 201–254

    Google Scholar 

  • Wehrmeyer, W. (1983) In: Photosynthetic Procaryotes: Cell differentiation and function (Edited by G.C. Papageorgiou and L. Packer) pp. 1–22. Elsevier, Amsterdam.

    Google Scholar 

  • Zuber, H., R. Brunisholz, and W. Sidler (1987) In: Photosynthesis (Edited by J. Amesz) pp. 231–271. Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mörschel, E., Schatz, GH., Lange, W. (1991). The Supramolecular Structure of the Light-Harvesting System of Cyanobacteria and Red Algae. In: Riklis, E. (eds) Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3732-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3732-8_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6661-4

  • Online ISBN: 978-1-4615-3732-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics