Skip to main content

umuC-Independent, recA-Dependent Mutagenesis

  • Chapter
Book cover Photobiology

Abstract

Although targeted UV-radiation mutagenesis appears to require both the recA and umuC genes in Escherichia coli, examples of recA-dependent but umuC-independent mutagenesis exist, e.g., gamma-radiation mutagenesis (Mutat. Res. 128, 1, 1984) and streptozotocin mutagenesis (Mutat. Res. 166, 229, 1986). Most of the information on umuC-independent mutagenesis comes from studies on ionizing radiation mutagenesis. These results will be reviewed here. Analyses of the various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777(+1 frameshift) reversion were performed on umuC and wild-type cells gamma irradiated in the presence and absence of oxygen. In wild-type cells, the presence of oxygen enhances gamma-radiation mutagenesis. Although the umuC strain showed the gamma-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but not all oxygen-dependent frameshift mutagenesis. For anoxically-irradiated cells, the yields of GC→AT and AT→GC transitions were largely umuC independent, while the yields of (AT or GC)→TA transversions were heavily umuC dependent. Therefore, the data for anoxically-irradiated cells support the hypothesis that gamma irradiation produces two kinds of DNA lesions that require recA-dependent misrepair to induce mutations. For base-substitution mutagenesis, one kind of lesion requires the umuC gene and produces transversion mutations, while a second kind of lesion produces transition mutations and does not require the umuC gene. For cells irradiated in the presence of oxygen, there seems to be an additional kind of lesion whose mutagenic potential for base substitutions (but not frameshifts) is completely dependent on the umuC gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayaki, H., Yamamoto, O., and Sawada, S., 1987, Role of the main cytosine radiolytic product in ionizing radiation-induced mutagenesis. Journal of Radiation Research, 28, 254–261.

    Article  PubMed  CAS  Google Scholar 

  • Breimer, L.H., and Lindahl, T., 1985, Enzymatic excision of DNA bases damaged by exposure to ionizing radiation or oxidizing agents. Mutation Research, 150, 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Burns, P.A., Gordon, A.J.E., and Glickman, B.W., 1987, Influence of neighbouring base sequence on N-methyl-N’-nitro-N-nitrosoguanidine mutagenesis in the lacI gene of Escherichia coli. Journal of Molecular Biology, 194, 385–390.

    Article  PubMed  CAS  Google Scholar 

  • Elledge, S.J., and Walker, G.C., 1983, Proteins required for ultraviolet light and chemical mutagenesis. Identification of the products of the umuC locus of Escherichia coli. Journal of Molecular Biology, 164, 175–192.

    Article  PubMed  CAS  Google Scholar 

  • Fram, R.J., Sullivan, J., and Marinus, M.G., 1986, Mutagenesis and repair of DNA damage caused by nitrogen mustard, N,N’-bis(2-chloroethyl)-N-nitrosourea (BCNU), streptozotocin, and mitomycin C inE. coli. Mutation Research166, 229–242.

    Article  CAS  Google Scholar 

  • Ishii, Y., and Kondo, S., 1975, Comparative analysis of deletion and base-change mutabilities of Escherichia coli B strains differing in DNA repair capacity (wild-type,uvrA, polA, recA)by various mutagens. Mutation Research, 27, 27–44.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T., and Nakano, E., 1981, Effects of the umuC36 mutation on ultraviolet-radiationinduced base-change and frameshift mutations in Escherichia coli. Mutation Research, 83, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T., and Shinoura, Y., 1977, Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Molecular and General Genetics,156, 121–131.

    PubMed  CAS  Google Scholar 

  • Kato, T., Shinoura, Y., Templin, A., and Clark, A.J., 1980, Analysis of ultraviolet light-induced suppressor mutations in the strain of Escherichia coli K-12 AB1157: An implication for molecular mechanisms of UV mutagenesis. Molecular and General Genetics, 180, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, S., 1968, Mutagenicity versus radiosensitivity in Escherichia coli. Proceedings of the 12th International Congress of Genetics, 2, 126–127.

    Google Scholar 

  • Kondo, S., Ichikawa, H., Iwo, K., and Kato, T., 1970, Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities. Genetics, 66, 187–217.

    PubMed  CAS  Google Scholar 

  • Kunkel, T.A., 1984, Mutational specificity of depurination, Proceedings of the National Academy of Sciences (USA) 81, 1494–1498.

    Article  CAS  Google Scholar 

  • Laspia, M.F., and Wallace, S.S., 1988, Excision repair of thymine glycols, urea residues, and apurinic sites in Escherichia coli. Journal of Bacteriology, 170, 3359–3366.

    PubMed  CAS  Google Scholar 

  • Miller, J.H., 1983, Mutational specificity in bacteria. Annual Review of Genetics, 17, 215–238.

    Article  PubMed  CAS  Google Scholar 

  • Rabkin, S.D., Moore, P.D., and Strauss, B.S., 1983 In vitro bypass of UV-induced lesions by Escherichia coli DNA polymerase I: Specificity of nucleotide incorporation. Proceedings of the National Academy of Science (USA), 80, 1541–1545.

    Article  CAS  Google Scholar 

  • Sargentini, N.J., and Smith, K.C., 1984, umuC-Dependent and umuC-independent gamma-and UV-radiation mutagenesis in Escherichia coli. Mutation Research 128, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Sargentini, N.J., and Smith, K.C., 1987, Ionizing and ultraviolet radiation-induced reversion of sequenced frameshift mutations in Escherichia coli: a new role for umuDCsuggested by delayed photoreactivation. Mutation Research, 179, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Sargentini, N.J., and Smith, K.C., 1989, Mutational spectrum analysis of umuC-independent and umuC-dependent gamma-radiation mutagenesis in Escherichia coli. Mutation Research 211, 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Schaaper, R.M., Glickman, B.W., and Loeb, L.A., 1982, Mutagenesis resulting from depurination is an SOS process. Mutation Research 106, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Schendel, P.F., and Defais, M., 1980, The role of umuC gene product in mutagenesis by simple alkylating agents. Molecular and General Genetics, 177, 661–665.

    PubMed  CAS  Google Scholar 

  • Shinagawa, H., Kato, T., Ise, T., Makino, K., and Nakata, A., 1983, Cloning and characterization of the umu operon responsible for inducible mutagenesis inEscherichia coli. Gene,23, 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Shinoura, Y., Ise, T., Kato, T., and Glickman, B.W., 1983, umuC-mediated misrepair mutagenesis in Escherichia coli: extent and specificity of SOS mutagenesis. Mutation Research, 111, 51–59.

    Article  CAS  Google Scholar 

  • Shirname-More, L., Rossman, T.G., Troll, W., Teebor, G.W., and Frenkel, K., 1987, Genetic effects of 5-hydroxymethyl-2’-deoxyuridine, a product of ionizing radiation. Mutation Research 178, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Steinborn, G., 1978, uvm Mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Molecular and General Genetics,165, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Teoule, R., 1987, Radiation-induced DNA damage and its repair. International Journal of Radiation Biology 51, 573–589.

    Article  CAS  Google Scholar 

  • Ullrich, M., and Hagen, U., 1971, Base liberation and concomitant reactions in irradiated DNA solutions. International Journal of Radiaton Biology, 19, 507–517.

    Article  CAS  Google Scholar 

  • Walker, G.C., 1977, Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in Escherichia coli K-12. Molecular and General Genetics, 152, 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G.C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiological Reviews, 48, 60–93.

    PubMed  CAS  Google Scholar 

  • Walker, G.C., and Dobson, P.P., 1979, Mutagenesis and repair deficiences of Escherichia coli umuC mutants are suppressed by the plasmid pKM101. Molecular and General Genetics, 172, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Witkin, E.M., 1976, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriological Reviews, 40, 869–907.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, K.C., Sargentini, N.J. (1991). umuC-Independent, recA-Dependent Mutagenesis. In: Riklis, E. (eds) Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3732-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3732-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6661-4

  • Online ISBN: 978-1-4615-3732-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics