Skip to main content

UV-Inducible Repair in Yeast

  • Chapter
Photobiology

Abstract

DNA is a highly dynamic material which undergoes numerous structural alterations which may or may not be accompanied by informational changes. In pro-and eukaryotic cells numerous endo-and exogenous sources are known to cause DNA damage: DNA-related processes such as replication, transcription, recombination etc. involve DNA breakage, and countless genotoxic agents induce many types of DNA damage. Opposed to these sources of genetic instability are DNA protective enzymatic processes, for example, mechanisms accounting for replication fidelity and DNA repair processes, which guarantee a steady state of genetic flexibility in cells. Genes controlling repair of spontaneous (“endogenous”) and induced DNA damage also undertake functions in the control of replication, recombination, mutagenesis (for review, see Haynes and Kunz, 1981). Consequently, studies of repair processes frequently involve investigations of genetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aker, M. and Mortimer, R.K. (1986), Transcriptional patterns and nucleotide sequence of RAD51 and its flanking regions. Yeast 2, (Spec. Iss.), S3.

    Google Scholar 

  • Angulo, J.F., Schwencke, J., Moreau, P.L. and Moustacchi, E. (1985), A yeast protein analogous to Escherichia coli RecA protein whose cellular level is enhanced after UV irradiation. Mol. Gen. Genet. 201, 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Cole, G.M., Schild, D., Lovett, S.T. and Mortimer, R.K. (1987), Regulation of RAD54- and RAD52-lacZ gene fusions in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 7, 1078–1084.

    PubMed  CAS  Google Scholar 

  • Elledge, S.J. and Davis, R.W. (1987), Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7, 2783–2793.

    PubMed  CAS  Google Scholar 

  • Elledge, S.J. and Davis, R.W. (1988), Identification of the genes encoding ribonucleotide reductase from yeast, a cell-cycle regulated, DNA-damage inducible enzyme required for mitotic viability. Yeast 4 (Spec. Iss.), S124.

    Google Scholar 

  • Friedberg, E.C. (1988), Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Revs. 52, 70–102.

    CAS  Google Scholar 

  • Haynes, R.H. and Kunz, B.A. (1981), DNA repair and mutagenesis in yeast. In The Molecular Biology of the Yeast Saccharomyces cerevisiae: Life cycle and Inheritance (edited by J.N. Strathern, E.W. Jones and J.R. Broach), pp. 371–414, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Haynes, R.H., Eckardt, F. and Kunz, B.A. (1985), Analysis of non-linearities in mutation frequency curves. Mutat. Res. 15, 51–59.

    Google Scholar 

  • Jentsch, S., McGrath, J.P. and Varshaysky, A. (1987), The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature, 329, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, A.L., Barker, D.G. and Johnston, L.H. (1986), Induction of yeast DNA ligase genes in exponential and stationary phase cultures in response to DNA damaging agents, Curr. Genet., 11, 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, L.H., White, J.H.M., Johnson, A.L., Lucchini, G. and Plevani, P. (1987), The yeast DNA polymerase I transcript is regulated in both the mitotic cell cycle and in meiosis and is also induced after DNA damage. Nucl. Acids Res., 15, 5017–5029.

    Article  PubMed  CAS  Google Scholar 

  • Karin, M. and Herrlich, P. (1988), Cis-and trans-acting genetic elements responsible for induction of specific genes by tumor promoters, serum factors and stress. In Genes and Signal Transduction in Multistage Carcinogenesis (edited by N.H. Colburn), Marcel Dekker, Inc., New York.

    Google Scholar 

  • Kupiec, M. and Simchen, G. (1986), Regulation of the RAD6 gene of Saccharomyces cerevisiae in the mitotic cell cycle and in meiosis. Mol. Gen Genet. 203, 538–543.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, C.W. (1982), Mutagenesis in Saccharomyces cerevisiae. Adv. Genet., 21, 173–254.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, C.W. and Christensen, R. (1978), Ultraviolet-induced reversion of cycl alleles in radiation sensitive strains of yeast. H. REV2 mutant strains, Genetics, 90, 213–226.

    PubMed  CAS  Google Scholar 

  • Lawrence, C.W., O’Brien and Bond, J. (1984), UV-induced reversion of his4 frameshift mutations in radio, revl and rev3 mutants of yeast. Mol. Gen Genet.,195, 487–490.

    Article  PubMed  CAS  Google Scholar 

  • Lemontt, J.F. (1971), Mutants of yeast defective in mutations induced by ultraviolet light,Genetics,68,21–33.

    PubMed  CAS  Google Scholar 

  • McClanahan, T.A. and McEntee, K. (1984), Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Molec. Cell. Biol., 4, 2356–2363.

    PubMed  CAS  Google Scholar 

  • McIntosh, E.M., Gadsden, M.G., Haynes, R.H. (1986), Transcription of genes encoding enzymes involved in DNA synthesis during the cell cycle of Saccharomyces cerevisiae,Mol. Gen. Genet., 204, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Morawetz, C. (1987), Effect of irradiation and mutagenic chemicals on the generation of ADH2-constitutive mutants in yeast. Significance for the inducibility of Ty transposition. Mutat. Res., 177, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, R.K. and Schild, D. (1985), Genetic map of Saccharomyces cerevisiae, Ed. 9. Microbiol. Rev., 49, 181–212.

    PubMed  CAS  Google Scholar 

  • Peterson, T.A., Prakash, L., Osley, M.A. and Reed, S.I. (1985), Regulation of the CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Cell. Biol. 5, 226–235.

    PubMed  CAS  Google Scholar 

  • Reynolds, P., Weber, S. and Prakash, L. (1985). RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc. Natl. Acad. Sci. U.S.A., 82, 168–172.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G.W., Nicolet, C.M., Kalainov, D., Friedberg, E.C. (1986), A yeast excision-repair gene is inducible by DNA damaging agents. Proc. Natl. Acad. Sci. U.S.A., 83, 1842–1846.

    Article  PubMed  CAS  Google Scholar 

  • Rolfe, M. (1985a), UV-inducible proteins in Saccharomyces cerevisiae, Curr. Genet.,9, 529–532.

    Article  CAS  Google Scholar 

  • Rolfe, M. (1985b), UV-inducible transcripts in Saccharomyces cerevisiae,Curr. Genet., 9, 533–538.

    Article  CAS  Google Scholar 

  • Ruby, S.W., Szostak, J.W. and Murray, A.W. (1983), Cloning regulated yeast genes from a pool of lacZ fusions. In Methods of Enzymology 101, Recombinant DNS, Part C (Edited by R. Wu, L. Grossman and K. Moldave), pp. 253–269, Academic Press, New York.

    Chapter  Google Scholar 

  • Schwencke, J. and Moustacchi, E. (1982a), Proteolytic activities in yeast after UV irradiation. I. Variation in proteinase levels in repair proficient RAD + strains. Mol. Gen. Genet., 185, 290–295.

    Article  CAS  Google Scholar 

  • Schwencke, J. and Moustacchi, E. (1982b). Proteolytic activities in yeast after UV irradiation. II. Variation in proteinase levels in mutants blocked in DNA repair pathways. Mol. Gen. Genet.,185, 296–295.

    Article  CAS  Google Scholar 

  • Sclafani, R.A. and Fangman, W.L. (1984), Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc. Natl. Acad. Sci. U.S.A., 81, 5821–5825.

    Article  PubMed  CAS  Google Scholar 

  • Siede, W. (1988), The RAD6 gene of yeast: a link between DNA repair, chromosome structure and protein degradation, Radiat. Environ. Biophys., 27, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Siede, W. and Brendel, M. (1981), Isolation and characterization of yeast mutants with thermoconditional sensitivity to the bifunctional alkylating agent nitrogen mustard. Curr. Genet., 4, 145–149.

    Article  CAS  Google Scholar 

  • Siede, W. and Eckardt, F. (1984), Inducibility of error-prone DNA repair in yeast, Mutat. Res.,129, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Siede, W. and Eckardt, F. (1986a), Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. III. Dose-response pattern of mutation induction in UV-irradiated rev2ts cells. Mol. Gen. Genet., 202, 68–74.

    Article  CAS  Google Scholar 

  • Siede, W. and Eckardt, F. (1986b), Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on rev2 dependent UV-mutagenesis and repair. Curr. Genet., 10, 871–878.

    Article  CAS  Google Scholar 

  • Siede, W. and Eckardt-Schupp, F. (1986a). A mismatch repair-based model can explain some features of UV mutagenesis in yeast. Mutagenesis,1, 471–474.

    Article  CAS  Google Scholar 

  • Siede, W. and Eckardt-Schupp, F. (1986b), DNA repair genes of Saccharomyces cerevisiae: complementing rad4 and rev2 mutations by plasmids which cannot be propagated in Escherichia coli. Curr. Genet., 11, 205–210.

    Article  CAS  Google Scholar 

  • Siede, W., Eckardt, F. and Brendel, M. (1983a), Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. II. Influence of cycloheximide on UV-irradiated exponentially growing phase rev2s Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. III. Dose-response pattern of mutation induction in UV-irradiated rev2s cells. Mol. Gen. Genet., 190. 413–416.

    Article  CAS  Google Scholar 

  • Treger, J.M., Heichman K.A. and McEntee, K. (1988) Expression of the yeast UBI4 gene increases in response to DNA-damaging agents and in meiosis. Molec. Cell. Biol., 8, 1132–1136.

    PubMed  CAS  Google Scholar 

  • Walker, G.C. (1985). Inducible DNA repair systems. Ann. Rev. Biochem., 54, 425–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eckardt-Schupp, F., Ahne, A., Obermaier, S., Wendel, S. (1991). UV-Inducible Repair in Yeast. In: Riklis, E. (eds) Photobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3732-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3732-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6661-4

  • Online ISBN: 978-1-4615-3732-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics