The Ribosomal RNA Operons of Halophilic Archaebacteria

  • Patrick P. Dennis
Part of the NATO ASI Series book series (NSSA, volume 201)


The comparative analysis of both 5S rRNA and small subunit rRNA sequences provided the first compelling evidence that archaeobacteria were a unique and coherent phylogenetic group, separate and distinct from both the eubacteria and the eucaryotes [1]. Within the archaebacteria, the extreme halophiles were shown to be a closely related phylogenetic clade and descendant from the anaerobic methanogens. As an alternative to using sequence comparison of structural RNAs and as part of an overall effort to characterize some of the unique features of halophilic archaebacteria at the molecular level, we have been examining the genetic organization and transcription of rRNA operons and the processing and assembly of the transcripts into ribosomal particles.


rRNA Operon Conserve Sequence Block Halophilic Protein Halobacterium Halobium rRNA Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. R. Woese and G. E. Fox, Phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc. Nat. Acad. Sci. USA, 74: 5088 (1977).PubMedCrossRefGoogle Scholar
  2. [2]
    R. Gupta, A. Broccoli and C. R. Woese, Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium. Science221: 656 (1983)PubMedCrossRefGoogle Scholar
  3. [3]
    I. Hui and P. P. Dennis, Characterization of the ribosomal RNA gene clusters in Halobacterium cutirubrum. J. Biol. Cheng. 260: 899 (1985)Google Scholar
  4. [4]
    N. Larsen, H. Leffers, J. Kjems and R. Garrett, Evolutionary divergence between ribosomal RNA operons of Halococcus morrhuaeand Desul furococcus mobilis. System. Appl. Microbiol. 7: 49 (1986).CrossRefGoogle Scholar
  5. [5]
    A. S. Mankin and V. K. Kagramanova, Complete nucleotide sequence of the single ribosomal RNA operon of Halobacterium halobium: secondary structure of the archaebacterial 23S rRNA. Mol. Gen. Genet., 202: 152 (1986).CrossRefGoogle Scholar
  6. [6]
    M. Mevarech, S. Hirsch-Twizer, S. Goldman, E. Yakobson, H. Eisenberg and P. P. Dennis, Isolation and characterization of the rRNA gene clusters of Halobacterium marismortui. J. Bacteriol. 171: 3479 (1989).PubMedGoogle Scholar
  7. [7]
    P. P. Dennis, Molecular biology of archaebacteria. J. Bacteriol.186: 471 (1986).Google Scholar
  8. [8]
    J. Chant and P. P. Dennis, Archaebacteria: Transcription and processing of ribosomal RNA sequences in Halobacterium cutirubrum. EMBO J. 5: 1091 (1986).PubMedGoogle Scholar
  9. [9]
    C. J. Daniels, J. D. Hofman, J. G. McWilliams, W. F. Doolittle, C. R. Woese, K. R. Lenhresen and G. E. Fox, Sequence of 5S ribosomal RNA gene regions and their products in the archaebacteria H. volcanii. Mol. Gen. Genet. 198: 270 (1985).PubMedCrossRefGoogle Scholar
  10. [10]
    J. Chant, I. Hui, D. de Jong-Wong, L. Shimmin and P.P. Dennis, The protein synthesis machinery of the archaebacterium Halobacterium cutirubrum: molecular characterization. Syst. Appl. Microbiol.7: 106 (1986).CrossRefGoogle Scholar
  11. [11]
    P. P. Dennis, Multiple promoters for the transcription of the ribosomal RNA gene cluster in Halobacterium cutirubrum. J. Mol. Biol. 186: 457 (1985).PubMedCrossRefGoogle Scholar
  12. [12]
    W. A. Reiter, P. Palm and W. Zillig, Analysis of transcription in the archaebacterium Sulfolobusindicates that archaebacterial promoters are homologous to eucaryotic pol II promoters. Nucl. Acids Res.16: 1 (1988).PubMedCrossRefGoogle Scholar
  13. [13]
    A. S. Mankin and V. K. Kagramanova, Complex promoter pattern of a single ribosomal RNA operon of an archaebacteria, Halobacterium halobium. Nucl. Acids Res.16: 4679 (1988).PubMedCrossRefGoogle Scholar
  14. [14]
    L. Thompson and C. Daniels, A tRNA trp intron endonuclease from H. volcanii: Unique substrate recognition properties. J. Biol. Chant.263: 17951 (1988).Google Scholar
  15. [15]
    L. Thompson, L. Brandon, D. Neuewlandt and C. Daniels, Transfer RNA intron processing in halophilic archaebacteria. Can. J. Microbiol. 35:36 (1989).PubMedCrossRefGoogle Scholar
  16. [16]
    J. Kjems and R. Garrett, Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Cell, 54:693 (1988).PubMedCrossRefGoogle Scholar
  17. [17]
    J. Kjems, J. Jensen, T. Oleson and R. Garrett, Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacteria Desulfurococcus mobilis. Can. J. Microbiol. 35: 210 ( 1989.PubMedCrossRefGoogle Scholar
  18. [18]
    S. Li, C. Squires and C. L. Squires, Antitermination of E. colirRNA transcription is caused by a control region segment containing lambda nut-like sequences. Cell, 38: 851 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Patrick P. Dennis
    • 1
  1. 1.Department of BiochemistryThe University of British ColumbiaVancouverCanada

Personalised recommendations