Halophilic Organisms and the Environment

  • Alberto Ramos-Cormenzana
Part of the NATO ASI Series book series (NSSA, volume 201)


The halophilic bacteria are usually found in habitats where salt concentration is higher than the concentration of salt in the sea, and also in numerous environments with different salinities. Halophiles have been described in a wide diversity of environments, including those from museum cultures [1]. But although most of the research has been done on hypersaline environments, they have also been isolated from other non-saline habitats such as freshwaters [2].


Salt Marsh Saline Soil Halophilic Bacterium Phototrophic Bacterium Hypersaline Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. I. Lenova and E. V. Borisova, Bacteria accompanying some halophilic algae, Microbiol. J. 45: 39 (1983) (in Russian).Google Scholar
  2. [2]
    H. Larsen, Halophilism. in “The Bacteria”, I. C. Gunsaulus and R. Y. Stanier (eds), Vol. IV, pp 297–342, Academic Press, New York (1962)Google Scholar
  3. [3]
    H. Larsen, Halophilic and halotolerant microorganisms, an overview and historical perspective, FEMS Microbiol. Rev., 39: 3 (1986)CrossRefGoogle Scholar
  4. [4]
    W. D. Grant and H. M. N. Ross, The ecology and taxonomy of halobacteria, FEMS Microbiol. Rev., 39: 9 (1986)CrossRefGoogle Scholar
  5. [5]
    F. Rodríguez-Valera, The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiol. Rev., 39: 17 (1986)CrossRefGoogle Scholar
  6. [6]
    J. F. Imhoff, Halophilic Phototrophic Bacteria, in“Halophilic Bacteria”, F. Rodriguez-Valera (ed), Vol. I, 85–108, C. R. C. Press, Boca Raton, Florida. (1988)Google Scholar
  7. [7]
    F. Rodriguez-Valera, A. Ventosa, G. Juez and J. F. Imhoff, Variation of environmental features and microbial populations with salt concentration in a multi pond saltern. Microb. Ecol.11: 107 (1985)CrossRefGoogle Scholar
  8. [8]
    B. J. Tindall, H. N. M. Ross and W. D. Grant, Natronobacteriumgen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. System. Appl. Microbiol.5: 41 (1984)CrossRefGoogle Scholar
  9. [9]
    M. Torreblanca, F. Rodríguez-Valera, G. Juez, A. Ventosa, M. Kamekura and M. Kates, Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferaxgen. nov. System. Appl. Microbiol.8: 89 (1986)CrossRefGoogle Scholar
  10. [10]
    G. Juez, Taxonomy of Extremely Halophilic Archaebacteria, in“Halophilic Bacteria, Vol. 2”, F. Rodriguez-Valera, ed, CRC Press, Boca Ratón, Florida (1988)Google Scholar
  11. [11]
    A. Ventosa, Taxonomy of moderate halophilic heterotrophic eubacteria, In“Halophilic Bacteria, Vol. 1”, F. Rodríguez-Valera, ed., CRC Press, Boca Ratón, Florida (1988)Google Scholar
  12. [12]
    N. E. Gibbons, Isolation growth and requirements of halophilic bacteria, in “Methods in Microbiology Vol. 3B”, J. R. Norris and ? Ribbons, eds. pp.169183, Academic Press, New York.Google Scholar
  13. [13]
    D. B. Craig and D. L. Stevens, Halophilic Vibrio sepsis, South. Med. J. 73: 1285 (1980)Google Scholar
  14. [14]
    J. L. Larsen, A. F. Farid and I. Dalsgaard, A comprehensive study of environmental and human pathogenic Vibrio alginolyticusstrains, Zbl. Bakt. Hyg., I.Abt. Orig. A. 251: 213 (1981)Google Scholar
  15. [15]
    A. C. Wais, Recovery of halophilic archaebacteria from natural environments, FEMS Microbiol. Ecol., 53: 211 (1988)CrossRefGoogle Scholar
  16. [16]
    D. Claus, H. Fahmy, J. Rolf and N. Tosunoglu, Sporosarcina halophila, sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. System. Appl. Microbiol. 4: 496 (1983)CrossRefGoogle Scholar
  17. [17]
    A. Oren, A procedure for the selective enrichment of Halobacteroides halobius and related bacteria from anaerobic hypersaline sediments. FEMS Microbiol. Lett.42: 201 (1987)CrossRefGoogle Scholar
  18. [18]
    M. Cinco, M. Tamaro and L. Cociancich, Taxonomic, cultural and metabolic characteristics of halophilic leptospirae. Zbl. Bakt. Hyg., I.Abt. Orig. A 233: 400 (1975)Google Scholar
  19. [19]
    C. A. Wilson and L. H. Stevenson, The dynamics of the bacterial population associated with a salt marsh. J. Exp. Mar. Biol. Ecol.48: 123 (1980)CrossRefGoogle Scholar
  20. [20]
    Y. Henis and J. Eren, Preliminary studies on the microflore of a highly saline soil. Can. J. Microbiol., 9: 902 (1963)CrossRefGoogle Scholar
  21. [21]
    E. Quesada, A. Ventosa, F. Rodriguez-Valera and A. Ramos-Cormenzana, Types and properties of some bacteria isolated from hypersaline soils, J. Appl. Bacteriol., 53: 155 (1982)CrossRefGoogle Scholar
  22. [22]
    E. Quesada, A. Ventosa, F. Rodriguez-Valera, L. Megías and A. Ramos Cormenzana, Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils, J. Gen. Microbiol.129: 2649 (1983)Google Scholar
  23. [23]
    R. H. Vreeland, C. D. Litchfield, E. L. Martin and E. Elliot, Halomonas elongata, a new genus and species of extremely salt tolerant bacteria, Int. J. Syst. Bacteriol.30: 485 (1980)CrossRefGoogle Scholar
  24. [24]
    M. C. Márquez, A. Ventosa and F. Ruiz-Berraquero, A taxonomic study of heterotrophic halophilic and non-halophilic bacteria from a solar saltern. J. Gen. Microbiol.133: 45 (1987)Google Scholar
  25. [25]
    A. Del Moral, B. Prado, E. Quesada, T. García, R. Ferrer and A. Ramos Cormenzana, Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. J. Gen. Microbiol.134: 733 (1988)Google Scholar
  26. [26]
    A. Oren, W. G. Weisburg, M. Kessel and C. R. Woese, Halobacteroides halobiusgen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the dead Sea. System. Appl. Microbiol., 5: 58 (1984)CrossRefGoogle Scholar
  27. [27]
    E. Quesada, V. Bejar, M. J. Valderrama, A. Ventosa and A. Ramos Cormenzana, Isolation and characterization of moderately halophilic non-motile rods from different saline habitats. Microbiología1: 89 (1985)PubMedGoogle Scholar
  28. [28]
    K. J. Miller and S. B. Leschine, A halotolerant Planococcusfrom Antarctic Dry Valley soil. Curr. Microbiol.11: 205 (1984)CrossRefGoogle Scholar
  29. [29]
    F. Rodríguez-Valera, F. Ruiz-Berraquero and A. Ramos-Cormenzana, Isolation of extreme halophiles from sea water. Appl. Environ. Microbiol.38: 164 (1979)PubMedGoogle Scholar
  30. [30]
    J. Brisou, D. Courtois and F.Fenis, Microbilogical study of a hypersaline lake in French Somaliland. Appl. Microbiol.27: 819 (1974)PubMedGoogle Scholar
  31. [31]
    A. Del Moral, A study of Halophilic Bacterial Microflora from an inland saltern. Thesis. University of Granada (in Spanish)Google Scholar
  32. [32]
    D. D. Johnson and W. D. Guenzi, Influence of salts on ammonium oxidation and carbon dioxide evolution from soil. Soil Sci. Soc. Am. Proc., 27: 663 (1963)CrossRefGoogle Scholar
  33. [33]
    P. Heilman, Effects of added salts on nitrogen release and nitrate levels in forest soils of the Washington Coastal area. Soil Sci. Soc. Ana. Proc.39: 778 (1975)CrossRefGoogle Scholar
  34. [34]
    W. T. Frankenberger and F. T. Bingham, Influence of salinity on soil enzyme activities. Soil Sci. Soc. Am. J.46: 1173 (1982)CrossRefGoogle Scholar
  35. [35]
    G. McClung and W. T. Frankenberger, Soil nitrogen transformations affected by salinity. Soil Sci., 139: 405 (1985)CrossRefGoogle Scholar
  36. [36]
    R. O. Laura, Effects of neutral salts on carbon and nitrogen mineralization of organic matter in soil. Plant Soil, 4: 113 (1974)CrossRefGoogle Scholar
  37. [37]
    L. A. Cervantes and J. Olivares, Microbiological studies of a saline soil in ElSalitre, Colombia, Rev. Latinoam. Microbiol.18: 73 (1976)PubMedGoogle Scholar
  38. [38]
    M. M. El-Shinnawi and W. T. Frankenberger, Salt inhibition of free-living diazotroph population density and nitrogenase activity in soil. Soil Sci. 146: 176 (1988)CrossRefGoogle Scholar
  39. [39]
    K. Jones, Nitrogen fixation in a salt marsh. J. Ecol.62: 553 (1974)CrossRefGoogle Scholar
  40. [40]
    M. E. Casselman, W. H. Patrick, Jr, and R. D. DeLaune, Nitrogen fixation in a Gulf Coast Salt Marsh. Soil Sci. Soc. Ana. J.45: 51 (1981)CrossRefGoogle Scholar
  41. [41]
    R. K. Rabie and K. Kumazawa, Effect of salinization and desalinization on the uptake, distribution and assimilation of fertilizer nitrogen by nodulated soybeans. Soil Sci. Plant Nutr., 34: 493 (1988)CrossRefGoogle Scholar
  42. [42]
    R. S. Whitney and R. Gardner, The effect of carbon dioxide on soil reaction. Soil Sci. 55: 127 (1943)CrossRefGoogle Scholar
  43. [43]
    C. Sauberán and J. S. Molina, Recuperación de bajos alcalinos, Ciencia e Investigación16: 337 (1960)Google Scholar
  44. [44]
    G. Denariaz, W. J. Payne and J. Le Gall, A halophilic denitrifier Bacillus halodenitrificanssp. nov. Int. J. Syst. Bacteriol.39: 145 (1989)CrossRefGoogle Scholar
  45. [45]
    G. G. Geesey, Microbial exopolymers: ecological and economic considerations. ASM News48: 9 (1982)Google Scholar
  46. [46]
    R. Fernández-Castillo, F. Rodríguez-Valera, J. Gonzalez-Ramos and F. Ruiz-Berraquero, Accumulation of poly-(ß-hydroxybutyrate) by halobacteria. Appl. Environ. Microbiol.51: 214 (1986)PubMedGoogle Scholar
  47. [47]
    J. Anton, I. Meseguer and F. Rodríguez-Valera, Production of an extracellular polysaccharide by Haloferax mediterranei, Appl. Environ. Microbiol.54: 2381 (1988)PubMedGoogle Scholar
  48. [47]
    J. Anton, I. Meseguer and F. Rodríguez-Valera, Production of an extracellular polysaccharide by Haloferax mediterranei, Appl. Environ. Microbiol.54: 2381 (1988)PubMedGoogle Scholar
  49. [49]
    J. R. Clark, D. M. Munnecke and G. E. Jenneman, In situMicrobial Enhancement of oil production. Den. Ind. Microbiol. 22: 695 (1980)Google Scholar
  50. [50]
    S. M. Pfiffner, M. J. Nclnerney, G. E. Jenneman and R. M. Knapp, Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl. Environ. Microbiol.51: 1224 (1986)PubMedGoogle Scholar
  51. [51]
    F. J. Post and F. A. Al-Harjan, Surface activity of halobacteria and potential use in microbially enhanced oil recovery. System. Appl. Microbiol.11: 97 (1988)CrossRefGoogle Scholar
  52. [52]
    C. T. Hou, N. Barnabe and K. Greaney, Biodegradation of xanthan by salt- tolerant aerobic microorganisms. J. Ind. Microbiol., 1: 31 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Alberto Ramos-Cormenzana
    • 1
  1. 1.Department of MicrobiologyUniversity of Granada Campus Universitario de CartujaGranadaSpain

Personalised recommendations