Advertisement

Halophily, Taxonomy, Phylogeny and Nomenclature

  • Hans G. Trüper
  • Jörg Severin
  • Axel Wohlfarth
  • Ewald Müller
  • Erwin A. Galinski
Part of the NATO ASI Series book series (NSSA, volume 201)

Abstract

On a first view there is apparently little correlation between taxonomy and halophily. The distribution of different compatible solutes in the eubacterial phyla Proteobacteria and Firmacutes follows a pattern, however, that at least follows certain regularities: (1) All eubacteria that gain energy from photosynthesis or respiration and are capable of haloadaptation are able to accumulate and/or synthesize compatible solutes. (2) When a eubacterium can grow in a non-complex medium, it usually can synthesize ectoine. Growth on yeast extract does not necessarily exclude ectoine synthesis. (3) Extreme halophily in eubacteria is always accompanied by glycine betaine synthesis. The complete synthesis of glycine betaine from CO2 or simple carbon compounds has only been proven for cyanobacteria, Ectothiorhodospiraceae and Actinopolyspora halophila. (4) A not yet identified compound “Y” occurs preferably in Firmacutes; Bacillus species accumulate and synthesize proline and glutamate as compatible solutes.

Keywords

Compatible Solute Glycine Betaine Ectoine Biosynthesis Organic Compatible Solute Glycine Betaine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. R. Woese, Bacterial evolution, Microbiol. Rev., 51: 221 (1987)PubMedGoogle Scholar
  2. [2]
    J. K. Lanyi, Salt dependent properties of proteins from extremely halophilic bacteria, Bacteriol. Rev.38: 272 (1974)PubMedGoogle Scholar
  3. [3]
    R. Reistad, On the composition and nature of the bulk protein of extremely halophilic bacteria. Arch. Microhiol.71: 353 (1970)Google Scholar
  4. [4]
    L. P. Visentin, C. Chow, A. T. Matheson, M. Yaguchi and F. Rollin, Halobacterium cutirubrumribosomes. Properties of the ribosomal proteins and ribonucleic acid. Biochenz. J.130: 103 (1972)Google Scholar
  5. [5]
    A. D. Brown, Microbial water stress. Bacteriol. Rev.40: 803 (1976)PubMedGoogle Scholar
  6. [6]
    A. Wohlfarth, J. Severin, and E. A. Galinski, The spectrum of compatible solutes in heterotrophic halophilic eubacteria of the family Halomonadaceae. J. Gen. Microbiol. (izz press)(1989)Google Scholar
  7. [7]
    A. Oren, Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalensand Halobacteroides halobius. Can. J. Microbiol. 32: 4 (1985)CrossRefGoogle Scholar
  8. [8]
    S. Rengpipat, S. E. Lowe and J. G. Zeikus, Effect of extreme salt concentrations on the physiology and biochemistry of Halohacteroides acetoeth_vlicus. J. Bacterial. 170: 3065 (1988)Google Scholar
  9. [9]
    R. H. Reed, L. J. Borowitzka, M. A. Mackay, J. A. Chudek, R. Foster, S. C. R. Warr, D. J. Moore, and W. D. P. Stewart, Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbial. Rev., 39: 51 (1986)CrossRefGoogle Scholar
  10. [10]
    J. F. Imhoff and F. Rodriguez-Valera, Betaine is the main compatible solute of halophilic eubacteria. J. Bacterial.160: 478 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Hans G. Trüper
    • 1
  • Jörg Severin
    • 1
  • Axel Wohlfarth
    • 1
  • Ewald Müller
    • 1
  • Erwin A. Galinski
    • 1
  1. 1.Institut für Mikrobiologie & BiotechnologieRheinische Friedrich-Wilhelms-UniversitätBonn 1Federal Republic of Germany

Personalised recommendations