Skip to main content

A Suggestion for Extension of Magnet Cryogenics into Acquisition and Computation Electronics and Photonics

  • Chapter
Supercollider 2
  • 130 Accesses

Abstract

The Superconducting Supercollider is estimated to have some 2 million liters of liquid helium and 1 million liters of liquid nitrogen associated with it (as well as some quantity of liquid argon). These cryogens are intended primarily for the purpose of inducing lowt-emperature superconductivity in the bending magnets (or for calorimetry duty). Data acquisition may require some 10,000, 1 Gbps links; data reduction will require up to 10 million VAX 780 equivalents; data storage needs are beyond current capabilities. The following argues that the extraordinary demands of the SSC upon electronics and photonics capabilities may justify extending the cryogens into other venues to reap benefits not widely recognized, at small incremental cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. C. Jaeger and F. H. Gaensslen, “MOS Devices and Switching Behavior,” Low Temperature Electronics, IEEE Press, 1986, p 92.

    Google Scholar 

  2. S. K. Tewksbury, “N-Channel Enhancement-Mode MOSFET Characteristics from 10 to 300 K,” IEEE Transactions on Electron Devices, vol. ED-28, Dec. 1981, pp. 1519–29.

    Article  Google Scholar 

  3. S. Hanamura, et al., “Operation of Bulk CMOS Devices at Very Low Temperatures,” 1983 IEEE Symposium on VLSI Technology, Maui,Hawaii, September, 1983, p. 46.

    Google Scholar 

  4. R. W. Keyes et al., “The Role of Low Temperatures in the Operation of Logic Circuitry,” Proceedings of the IEEE, vol. 58, no. 4, 1970, p. 1914.

    Article  CAS  Google Scholar 

  5. B. Lengeler, “Semiconductor Devices Suitable for Use in Cryogenic Environments,” Cryogenics,vol. 14, no. 8, August, 1974, pp. 439–447.

    Article  CAS  Google Scholar 

  6. M. Shoji, CMOS Digital Circuit Technology, Prentice-Hall, 1988, p. 427.

    Google Scholar 

  7. P. M. Solomon, “Materials, Devices, and Systems,” Low Temperature Electronics, IEEE Press, 1986, p. 17.

    Google Scholar 

  8. J. G. Hust, “Thermal Conductivity and Thermal Diffusivity,” Materials at Low Temperatures, ASM, 1983.

    Google Scholar 

  9. M. Nisenoff, Superconductor Week, April 25, 1988, p. 5.

    Google Scholar 

  10. R. K. Kirschman, “Cold Electronics: An Overview,” Cryogenics, vol. 25, no. 3, March, 1985, p. 118.

    Article  Google Scholar 

  11. R. C. Longsworth and W. A. Steyert, “Technology for Liquid-Nitrogen-Cooled Computers,” IEEE Transactions on Electron Devices, vol ED-34, no. 1, January 1987, p. 6.

    Article  Google Scholar 

  12. J. Katz, “Low-Temperature Characteristics of Semiconductor Injection Lasers,” in R. K. Kirschman, Low Temperature Electronics, IFFE Press, 1986, pp. 465–470.

    Google Scholar 

  13. A. K. Jonscher, “Semiconductors at Cryogenic Temperatures,” Proceedings of the IEEE, vol. 52, October, 1964, pp. 59–60.

    Article  Google Scholar 

  14. K. Vahala and A. Yariv, “Semiclassical Theory of Noise in Semiconductors Lasers - Part 1,” IEEE Journal of Quantum Electronics, vol. QE-19, 1983, pp. 1096–1101.

    Article  Google Scholar 

  15. K. Vahala and A. Yariv, “Occupation Fluctuation Noise: A Fundamental Source of Linewidth Broadening in Semiconductor Lasers,” Applied Physics Letters, vol. 43, 1983, pp. 140–142.

    Article  CAS  Google Scholar 

  16. J. M. Senior, Optical Fiber Communications Principles and Practices, Prentice-Hall, 1984, p. 312.

    Google Scholar 

  17. J. Gowar, Optical Communication Systems, Prentice-Hall, 1984, pp. 229–236.

    Google Scholar 

  18. H. Kressel, Topics in Applied Physics: Semiconductor Devices for Optical Communication, vol. 39, Springer-Verlag, p. 70.

    Google Scholar 

  19. R. W. Keyes, “Semiconductor Devices at Low Temperatures,” Comments on Solid State Physics, 1977.

    Google Scholar 

  20. C. C. Lo and B. Leskovar, “Cryogenically Cooled Broad-Band GaAs Field-Effect Transistor Preamplifier,” IEEE Transactions on Nuclear Science, vol. NS-31, February, 1984, p. 474.

    Article  Google Scholar 

  21. B. E. Briley, An Introduction to Fiber Optics System Design, North-Holland, 1988, Chapter 6.

    Google Scholar 

  22. Longsworth, Ibid.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Briley, B.E. (1990). A Suggestion for Extension of Magnet Cryogenics into Acquisition and Computation Electronics and Photonics. In: McAshan, M. (eds) Supercollider 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3728-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3728-1_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6659-1

  • Online ISBN: 978-1-4615-3728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics