Mode Locked Semiconductor Lasers

  • P. A. Morton
  • D. J. Derickson
  • R. J. Helkey
  • A. Mar
  • J. E. Bowers

Abstract

Mode locked semiconductor laser diodes offer the possibility of producing small, cheap and reliable sources of stable subpicosecond pulses over wide wavelength ranges and with moderate peak powers. They can be used in telecommunication systems for time division multiplexing or for high bit rate systems using an external modulator. Semiconductor lasers are ideal candidates for use in practical commercial electro-optic sampling systems and optical analog to digital converters due to their small size, low cost, low noise and small timing jitter in comparison to the use of the more complex and less reliable sources such as pulse compressed YAG lasers.

Keywords

Microwave Recombination Expense Autocorrelation Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. P. van der Ziel, “Mode Locking of Semiconductor Lasers”, in Semiconductors and Semimetals, vol 22B, edited by W. T. Tsang, Academic Press, Inc. (1985).Google Scholar
  2. [2]
    S. W. Corzine, J. E. Bowers, G. Przybylek, U. Koren, B. I. Miller, and C. E. Soccolich, “Active Mode Locked GalnAsP Laser with Subpicosecond Output”, Appl. Phys. Lett. 52, 348 (1988).CrossRefGoogle Scholar
  3. [3]
    J. E. Bowers, P. A. Morton, A. Mar, S. W. Corzine, “Actively Mode Locked Semiconductor Lasers”, IEEE J. Quantum Electron. QE-25, 1426 (1989).CrossRefGoogle Scholar
  4. [4]
    G. Eisenstein, R. S. Tucker, U. Koren, S. Korotky, “Active Mode Locking Characteristics of InGaAsP Single Mode Fiber Composite Cavity Lasers”, IEEE J. Quantum Electron., QE-22, 142 (1986).CrossRefGoogle Scholar
  5. [5]
    E. P. Ippen, D. J. Eilenbert, and R. W. Dixon, “Picosecond Pulse Generation by Passive Mode Locking of a Diode Laser”, Appl. Phys. Lett. 37, 267 (1980).CrossRefGoogle Scholar
  6. [6]
    Y. Silberberg, and P. W. Smith, “Subpicosecond Pulses from a Mode Locked Semiconductor Laser”, IEEE J. Quantum Electron. QE-22, 759 (1986).CrossRefGoogle Scholar
  7. [7]
    K. Y. Lau, and I. Ury, “Passive and Active Mode Locking of a Semiconductor Laser Without an External Cavity”, Appl. Phys. Lett. 46, 1117 (1985).CrossRefGoogle Scholar
  8. [8]
    R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, ‘40-GHz Active Mode Locking in a Monolithic Long-Cavity Laser’, Electron. Lett., 25, 621 (1989).CrossRefGoogle Scholar
  9. [9]
    P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, D. P. Wilt, ‘Monolithic Hybrid Mode Locked 1.3 um Semiconductor Lasers’, Appl. Phys. Lett., 56, 111 (1990).CrossRefGoogle Scholar
  10. [10]
    D. J. Derickson, R. J. Helkey, A. Mar, P. A. Morton, J. E. Bowers, ‘Self Mode-Locking of a Semiconductor Laser using Positive Feedback’, Appl. Phys. Lett., 56, 7 (1990).CrossRefGoogle Scholar
  11. [11]
    P. A. Morton, R. J. Helkey, J. E. Bowers, ‘Dynamic Detuning in Actively Mode Locked Semiconductor Lasers’, IEEE J. Quantum Electron., QE-25, Dec. (1989).Google Scholar
  12. [12]
    R. J. Helkey, P. A. Morton, J. E. Bowers, ‘Partial Integration Method for Analysis of Mode-Locked Semiconductor Lasers’, Optics Lett., 15, 112 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. A. Morton
    • 1
  • D. J. Derickson
    • 1
  • R. J. Helkey
    • 1
  • A. Mar
    • 1
  • J. E. Bowers
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations