Black Hole Radiation: Can Virtual Photoconductivity Produce a Similar Effect in Semiconductors?

  • E. Yablonovitch


Shortly after Hawking’s prediction of thermal radiation from Black Holes, it became apparent that there were other contexts in which such radiation could appear. For example, it was predicted that accelerating observers are bathed in thermal radiation (Unruh radiation). Even a stationary observer who is looking at an accelerating mirror should see such radiant energy. The effect is very weak, however. An acceleration g=980 cm/sec2 produces a radiation temperature of only ~4×10-20 °K, making its detection a major experimental challenge. A nonlinear optical window, whose refractive index is changing rapidly with time, appears, to an observer, to be a window into an accelerating world. The sudden injection of a virtual electron-hole plasma into a semiconductor window can change its refractive index on a sub-picosecond time scale, and can produce an apparent acceleration ~ 1020g.


Black Hole Event Horizon Thermal Radiation Casimir Force Frequency Chirp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    John Michell, Phil. Trans, Royal, Soc. 74, (1784) 35–57. Reprinted in Black Holes: Selected Reprints, ed. S. Detweiler, (American Assoc, of Physics Teachers, Stony Brook, NY, 1982).CrossRefGoogle Scholar
  2. 2.
    P. S. Laplace, Exposition du Systeme du Monde, vol. 2, (J. B. M. Duprat, Paris, 1796), p. 305. See also S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, (Cambridge Univ. Press, Cambridge, 1974), pp. 365–8.Google Scholar
  3. 3.
    W. Israel, in Three Hundred Years of Gravitation, ed. S. W. Hawking and W. Israel, (Cambridge Univ. Press, Cambridge, 1987).Google Scholar
  4. 4.
    J. D. Bekenstein, Physics Today, 33, no. 1, (Jan. 1980) 24.MathSciNetCrossRefGoogle Scholar
  5. 5a.
    J. D. Bekenstein, Nuovo Cimento Lett. 4 (1972) 737.CrossRefGoogle Scholar
  6. 5b.
    J. D. Bekenstein, Phys. Rev. D7 (1973) 2333.MathSciNetGoogle Scholar
  7. 6.
    S. W. Hawking, A Brief History of Time, (Bantam Books, NY, 1987).Google Scholar
  8. 7a.
    S. W. Hawking, Nature 248, (1974) 30.CrossRefGoogle Scholar
  9. 76.
    S. W. Hawking, Commun. Math. Phys. 43, (1975) 199.MathSciNetCrossRefGoogle Scholar
  10. 8.
    W. G. Unruh, Phys. Rev. D14, (1976) 870.Google Scholar
  11. 9.
    P. C. W. Davies, J. Phys. A8, (1975) 609.Google Scholar
  12. 10.
    B. S. DeWitt, Phys. Reports 19, (1975) 295.CrossRefGoogle Scholar
  13. 11.
    S. A. Fulling and P. C. W. Davies, Proc. Roy. Soc. A348, (1976) 393.MathSciNetGoogle Scholar
  14. 12.
    P. C. W. Davies and S. A. Fulling, Proc. Roy. Soc. A356, (1977) 237.Google Scholar
  15. 13a.
    E. Yablonovitch, Phys. Rev. Lett. 32, (1974) 1101.CrossRefGoogle Scholar
  16. 13b.
    E. Yablonovitch, Phys. Rev. A10, (1974) 1888.Google Scholar
  17. 14.
    E. Yablonovitch, Phys. Rev. Lett. 62, (1989) 1742.CrossRefGoogle Scholar
  18. 15.
    E. Yablonovitch, J. P. Heritage, D. E. Aspnes and Y. Yafet, Phys. Rev. 63, (1989) 976.Google Scholar
  19. 16.
    D. S. Chemla, D. A. B. Miller and S. Schmidt-Rink, Phys. Rev. Lett. 59, (1987) 1018.CrossRefGoogle Scholar
  20. 17.
    Y. Yafet and E. Yablonovitch, Phys. Rev. B to be published.Google Scholar
  21. 18.
    H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. 51, (1948) 793.MATHGoogle Scholar
  22. 19a.
    B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston and P. R. Smith, Appl. Phys. Lett. 56, (1990) 886.CrossRefGoogle Scholar
  23. 19b.
    C. H. Lee, Appl. Phys. Lett. 30, (1977) 84.CrossRefGoogle Scholar
  24. 20.
    M. van Exter and D. Grischkowsky, IEEE Trans. Microwave Th. & Tech.MTT-38, (1990) to be published.Google Scholar
  25. 21a.
    R. E. Slusher, L W. HoUberg, B. Yurke, J. C. Mertz and J. F. Valley, Phys. Rev. Lett. 55, (1985) 2409.CrossRefGoogle Scholar
  26. 21b.
    R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, (1986) 691.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • E. Yablonovitch
    • 1
  1. 1.Bell Communications ResearchNavesink Research CenterRed BankUSA

Personalised recommendations