Light Scattering in Oxide Superconductors

  • P. E. Sulewski
  • P. A. Fleury
  • K. B. Lyons

Abstract

As is well known, the unique structural feature connecting the various high T c materials is the presence of copper oxide planes1. By varying the out-of-plane constituents these planes may be doped into the metallic and eventually superconducting state. In the insulating phase, the Cu 2+ sites have a spin of 1/2 and order antiferromagnetically in the ground state, as determined, for example, by neutron scattering2. Since La2CuO4 exhibits the simplest crystal structure of the high T c materials, much effort has been focused on this and isostructural systems, in the hope of avoiding irrelevant complications. The schematic phase diagram, shown in Fig. 1, however, demonstrates that even the nominally simpler La2CuO4 system exhibits a rich variety of behaviors.

Keywords

Manifold Argon Acoustics La2CuO4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Sunshine, et al., Phys. Rev. B 38, 893 (1988).CrossRefGoogle Scholar
  2. 2.
    D. Vaknin, et al., Phys. Rev. Lett. 58, 2802 (1987).CrossRefGoogle Scholar
  3. 3.
    R. R. P. Singh, P. A. Fleury, K. B. Lyons, and P. E. Sulewski, Phys. Rev. Lett. 62, 2736 (1989).CrossRefGoogle Scholar
  4. 4.
    P. A. Fleury and R. Loudon, Phys. Rev. 166, 514 (1968).CrossRefGoogle Scholar
  5. 5.
    R. J. Elliott and M. F. Thorpe, J. Phys. C 2, 1630 (1969).CrossRefGoogle Scholar
  6. 6.
    P. A. Fleury and H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970).CrossRefGoogle Scholar
  7. 7.
    J. B. Parkinson, J. Phys. C 2, 2012 (1969).CrossRefGoogle Scholar
  8. 8.
    K. B. Lyons, P. A. Fleury, J. P. Remeika, A. S. Cooper, and T. J. Negran, Phys. Rev. B 37, 2353 (1988).CrossRefGoogle Scholar
  9. 9.
    K. B. Lyons, P. E. Sulewski, P. A. Fleury, H. L. Carter, A. S. Cooper, G. P. Espinosa, Z. Fisk, and S-W. Cheong, Phys. Rev. B 39, 9693 (1989).CrossRefGoogle Scholar
  10. 10.
    R. R. P. Singh, Phys. Rev. B 39, 9760 (1989).CrossRefGoogle Scholar
  11. 11.
    G. Aeppli, et al., Phys. Rev. Lett. 62, 2052 (1989).CrossRefGoogle Scholar
  12. 12.
    P. E. Sulewski, P. A. Fleury, K. B. Lyons, S-W. Cheong, and Z. Fisk, Phys. Rev. B 41, 225 (1990).CrossRefGoogle Scholar
  13. 13.
    L. F. Mattheiss, unpublished.Google Scholar
  14. 14.
    M. S. Hybertsen, et al., Phys. Rev. B 39, 9028 (1989).CrossRefGoogle Scholar
  15. 15.
    E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 8873 (1988).CrossRefGoogle Scholar
  16. 16.
    K. B. Lyons, P. A. Fleury, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 60, 732 (1988).CrossRefGoogle Scholar
  17. 17.
    J. E. Schirber, et al., Physica C 152, 121 (1988).CrossRefGoogle Scholar
  18. 18.
    J. D. Jorgensen, et al., Phys. Rev. B 38, 11337 (1988).CrossRefGoogle Scholar
  19. 19.
    H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).CrossRefGoogle Scholar
  20. 20.
    S. Uchida, et al., Physica C 162–164, 1677 (1989).CrossRefGoogle Scholar
  21. 21.
    A.C.W.P. James and D. W. Murphy, in Chemistry of Superconducting Materials, T. A. Vanderah, ed., (Noyes, 1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • P. E. Sulewski
    • 1
  • P. A. Fleury
    • 1
  • K. B. Lyons
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations