Advertisement

Specification of Source Characteristics for Ozone Prediction in a Complex Airshed

  • Shinji Wakamatsu
  • Itsushi Uno
  • Richard A. Wadden
Chapter
Part of the NATO · Challenges of Modern Society book series (NATS, volume 15)

Abstract

Photochemical O3 is formed in the atmosphere as a result of complex non-liner interaction of meteorology, emission distribution and chemical reactions. To investigate the urban O3 reduction strategy a three-dimensional grid model including meteorology, chemistry and emissions based on the real conditions should be needed.

Keywords

Source Category Photochemical Smog Tokyo Metropolitan Area Tokyo Area Photochemical Pollutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wakamatsu S., Y. Ogawa, K. Murano, K. Goi and, Y. Abramoto, (1983) Aircraft survey of the secondary photochemical pollutants covering the Tokyo Metropolitan Area. Atmos. Environ. 17, 827–835.CrossRefGoogle Scholar
  2. 2.
    Uno I., S. Wakamatsu, M. Suzuki and Y. Ogawa, (1984) Three-dimensional behavior of photochemical pollutants covering the Tokyo Metropolitan Area. Atmos. Environ. 18, 751–761.CrossRefGoogle Scholar
  3. 3.
    Uno I., S. Wakamatsu, R.A. Wadden, S. Konno and H. Koshio, (1985) Evaluation of hydrocarbon reactivity in urban air. Atmos. Environ. 19, 1283–1293.CrossRefGoogle Scholar
  4. 4.
    Wakamatsu S., I. Uno, and M. Suzuki, (1990) A field study of photochemical smog formation under stagnant meteorological condition. Atmos. Environ. 24, 1037–1050.CrossRefGoogle Scholar
  5. 5.
    Wakamatsu S., I. Uno and K.L. Schere, (1988) Air pollution modeling and it’s application, IV, 259-270 Plenum Publishing Corporation.Google Scholar
  6. 6.
    Ames J., T.C. Myers, L.E. Reid, D.C. Whitney, S.H. Golding, S.R. Hayes and S.D. Reynolds, (1985) Users’ Manual for the SAI Airshed Model. EPA Report-600/8-85-007a,b.Google Scholar
  7. 7.
    Wakamatsu S., K.L. Schere, J.H. Shreffler and I. Uno, (Feb. 27–28, 1987) A study using a three-dimensional photochemical smog formation model. presented at the 9th US-Japan Meeting on Air Pollution-Related Meteorology, Tokyo Japan.Google Scholar
  8. 8.
    Killus J.P. and G.A. Whitten, (1982) A New Carbon-bond Mechanism for Air Quality Simulation Modeling. EPA Report-600/3-82-041.Google Scholar
  9. 9.
    Wadden R.A., I. Uno and S. Wakamatsu, (1986) Source discrimination of short-term hydrocarbon samples measured aloft, Environ. Sci. Technol. 20, 473–483.CrossRefGoogle Scholar
  10. 10.
    Wakamatsu S., I. Uno and R.A. Wadden, (Dec 3–4, 1984) A study of NMHC source fingerprints and their photochemical reactivity. In Proc. of the Eighth US-Japan Conference on Photochemical Air Pollution, U.S. EPA, Research Triangle Park, NC, pp.45-76.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Shinji Wakamatsu
    • 1
  • Itsushi Uno
    • 1
  • Richard A. Wadden
    • 2
  1. 1.National Institute for Environmental StudiesTsukuba, Ibaraki 305Japan
  2. 2.School of Public HealthUniversity of IllinoisChicagoUSA

Personalised recommendations