Advertisement

Numerical Modelling of the Atmospheric Transport, Chemical Transformations and Deposition of Mercury

  • G. Petersen
  • B. Schneider
  • D. Eppel
  • H. Grassl
  • A. Iverfeldt
  • P. K. Misra
  • R. Bloxam
  • S. Wong
  • W. H. Schroeder
  • E. Voldner
  • J. Pacyna
Chapter
Part of the NATO · Challenges of Modern Society book series (NATS, volume 15)

Abstract

During the last two decades a large number of surface waters in Scandinavia and North America have been impacted by mercury pollution, which has resulted in an increase of the mercury content of their fish. (Lindqvist et al., 1984; National Academy of Sciences, 1978; National Research Council Canada, 1979). This wide-spread pollution problem cannot be connected to local discharges, but is correlated with atmospheric transport and deposition of other air pollutants.

Keywords

Mercury Concentration Atmospheric Transport Mercury Species Atmospheric Mercury Natural Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ATMOS (1988), Interim Report on Atmospheric Input to the North Sea. Convention for Prevention of Marine Pollution from Land-based Sources. Sixth Meeting of the Working Group on the Atmospheric Input of Pollutants to Convention Waters, Paris, November 15–17, 1988 (ATMOS 6/Info 19 E).Google Scholar
  2. Bloom, N.S., Fitzgerald, W.F., 1988, Determination of Volatile Mercury Species at the Picogram Level by Low Temperature Gas Chromatography with Cold-Vapor Atomic Fluorescence Detection, Anal. Chim. Acta, 208: 151–161.CrossRefGoogle Scholar
  3. Bloom, N.S., Watras, C.J., 1989, Observations of methylmercury in precipitation, Sci Total Env., 87/88, 199.CrossRefGoogle Scholar
  4. Brosset, C., 1987, The Behavior of Mercury in the Physical Environment, Water, Air and Soil Pollut., 34: 145–166.CrossRefGoogle Scholar
  5. Canada/FRG Workshop, 1989, Modelling the Atmospheric Transport and Deposition of Mercury, Geesthacht, FRG, September 18–19, 1989.Google Scholar
  6. Dornier, 1990, Europäische Modell-Emissionsdatenbasis Quecksilberkomponenten — 1982, F+E Vorhaben im Rahmen des UBA-Forschungsvorhabens 104 02 726 ‘Belastung von Nord-und Ostsee durch ökologisch gefährliche Stoffe am Beispiel atmosphärischer Quecksilberverbindungen’.Google Scholar
  7. Eliassen, A., Saltbones, J., 1983, Modelling of Long-range Transport of Sulphur over Europe: a Two Year Model Run and Some Model Experiments, Atmos. Environ., 17: 1457–1483.CrossRefGoogle Scholar
  8. Environmental Protection Service, 1981, National Inventory of Natural Sources and Emissions of Mercury Compounds, Air Pollution Directorate, Environment Canada.Google Scholar
  9. Iverfeldt, Å., Lindqvist, O., 1982, Distribution Equilibrium of Methyl Mercury Chloride between Water and Air, Atmos. Environ., 16: 2917–2925.CrossRefGoogle Scholar
  10. Iverfeldt, A., 1984, “Structural, Thermodynamic and Kinetic Studies of Mercury Compounds; Application within the Atmospheric Mercury Cycle”, Ph.D. Thesis, Chalmers University of Technology, Goeteborg, Sweden.Google Scholar
  11. Iverfeldt, Å, Lindqvist, O., 1984, The transfer of mercury at the air/ water interface, in W. Brutsaert and G.H. Jirka (eds.), Gas transfer at water surfaces, pp. 533-538, D. Reidel.Google Scholar
  12. Iverfeldt, Å., Lindqvist, O., 1986, Atmospheric Oxidation of Elemental Mercury by Ozone in the Aqueous Phase, Atmos. Environ., 20: 1567–1573.CrossRefGoogle Scholar
  13. Iverfeldt, Å., Rodhe, H., 1988, Atmospheric Transport and Deposition of Mercury in the Nordic Countries, progress report prepared for the Nordic Council of Ministers, Swedish Environmental Research Institute, Goeteborg, No. L 87-285.Google Scholar
  14. Jacques, A.P., 1987, Summary of Emissions of Antimony, Arsenic, Cadmium, Copper, Lead, Manganese, Mercury and Nickel in Canada, Internal Report, Environmental Analysis Branch, Conservation and Protection, Environment Canada, Ottawa, Ontario.Google Scholar
  15. Lee, Y.H., Iverfeldt, Å., 1990, Measurement of methylmercury and mercury in stream-, lake-, and rainwater, in manuscript.Google Scholar
  16. Lindqvist, O., Jernelöv, A., Johannson, K., Rodhe, H., 1984, Mercury in the Swedish Environment. Global and Local Sources, National Swedish Environmental Protection Board, Solna, Sweden, Report PM 1816.Google Scholar
  17. Lindqvist, O., Rodhe, H., 1985, Atmospheric Mercury — a Review, Tellus, 37B: 136–159.CrossRefGoogle Scholar
  18. Misra, P.K., Bloxam, R., Fung, C., Wong, S., 1989, Non-linear Response of Wet Deposition to Emissions Reduction: A Model Study, Atmos. Environ., 23: 671–683.CrossRefGoogle Scholar
  19. National Academy of Sciences, 1978, An Assessment of Mercury in the Environment, U.S. National Academy of Sciences, Washington, DC.Google Scholar
  20. National Research Council of Canada, 1979, Effects of Mercury in the Canadian Environment, National Research Council Canada, Ottawa, Ontario, Report No. 16739.Google Scholar
  21. Nriagu, J. O., 1989, Natural versus Anthropogenic Emissions of Trace Metals to the Atmosphere, in: “Control and Fate of Atmospheric Trace Metals”, J.M. Pacyna and B. Ottar, eds., Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  22. Petersen, G., Weber, H., Grassl, H., 1989, Modelling the Atmospheric Transport of Trace Metals from Europe to the North Sea and the Baltic Sea, in: “Control and Fate of Atmospheric Trace Metals”, J.M. Pacyna and B. Ottar, eds., Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  23. Pyankov, V.A., 1949, Kinetics of a reaction between mercury vapor and ozone, Zhur. Obschev Khim. (J. gen. Chem.), 19: 224–229Google Scholar
  24. Sanemasa, I., 1975, The Solubility of Elemental Mercury Vapor in Water, Bull. Chem. Soc. Jpn., 48: 1795–1798.CrossRefGoogle Scholar
  25. Schroeder, W.H., Jackson, R.A., 1987, Environmental Measurements with an Atmospheric Mercury Monitor Having Speciation Capabilities, Chemosphere, 16: 183–199.CrossRefGoogle Scholar
  26. Schroeder, W.H., Lindqvist, O., Munthe, J., 1989, Volatilization of Mercury from Natural Surfaces, Proc. 7th International Conference of Heavy Metals in the Environment, Geneva, Switzerland, September 12–15, 1989, Edt. Vernat, J.P., Publ. C.E.P. Consultants Ltd., Edinburgh, U.K., pp. 480–484.Google Scholar
  27. Stevens, R.D.S., Reid, N.W., Schroeder, W.H., McLean, R.A.N., 1982, “The Chemical Forms and Lifetimes of Mercury in the Atmosphere”, 65th Canadian Chemical Conference (CIC), Toronto, Ontario, Canada.Google Scholar
  28. Talmi, Y., Mesmer, R.E., 1975, Studies on Vaporization and Halogen Decomposition of Methyl Mercury Compounds Using GC with a Microwave Detector, Water Res., 9: 547–552.CrossRefGoogle Scholar
  29. Van Horn, 1975, Material Balance and Technology Assessment of Mercury and the Compounds on a National and Regional Basis, EPA-560/3-75-007.Google Scholar
  30. Voldner, E.C., Smith, L., 1990, Appendix 2 from the Workshop on Great Lakes Atmosperic Deposition, International Joint Commission, Windsor, Ontario, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • G. Petersen
    • 1
  • B. Schneider
    • 1
  • D. Eppel
    • 1
  • H. Grassl
    • 2
  • A. Iverfeldt
    • 3
  • P. K. Misra
    • 4
  • R. Bloxam
    • 4
  • S. Wong
    • 4
  • W. H. Schroeder
    • 5
  • E. Voldner
    • 5
  • J. Pacyna
    • 6
  1. 1.GKSS Research CentreInstitute of PhysicsGeesthachtFederal Republic of Germany
  2. 2.Meteorological Institute and Max-Planck-Institute of MeteorologyUniversity of HamburgHamburg 13Federal Republic of Germany
  3. 3.Swedish Environmental Research InstituteGoeteborgSweden
  4. 4.Ontario Ministry of the Environment 125RexdaleCanada
  5. 5.Atmospheric Environment ServiceDownsviewCanada
  6. 6.Norwegian Institute for Air ResearchNILULillestromNorway

Personalised recommendations