On the Physiological Basis of Higher Colour Metrics

  • Arne Valberg
  • Thorstein Seim
Part of the NATO ASI Series book series (NSSA, volume 203)


We explore here the predictive power of a physiological model of colour vision that combines the outputs of six types of colour-opponent cells of the parvocellular pathway. This model has been demonstrated to account well for the equidistant spacing of chromaticities in the Optical Society of America’s Uniform Color Scale and in the Munsell System. Chroma, in planes of constant luminance, is related to response magnitude after subtraction of an achromatic component, and hue to the relative activities of cell systems. Here, we demonstrate that the model is also capable of predicting the Bezold-Brücke phenomenon and the change of saturation with intensity without auxiliary assumptions Implications of the model for colour discrimination of dichromats are also presented.


Lateral Geniculate Nucleus Luminance Ratio Lateral Geniculate Nucleus Cell Chromatic Stimulus Cone Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abney, W., 1910, On the changes in hue of spectrum colours by dilution with white light. Proc. Roy. Soc. A, 83: 120–127.Google Scholar
  2. Abney, W., 1913, “Researches in Colour Vision and Trichromatic Theory” LongmansGreen; London.Google Scholar
  3. Bezold, W. von, 1873, Ueber das Gesetz der Farbmischung und die physiologischen Grundfarben. Pogg. Ann. d. Physik u. Chemie, 150: 221–247.Google Scholar
  4. Boynton, B. and Gordon, J., 1965, Bezold-Brücke hue shifts measured by color-naming techniques. J. Opt. Soc. Am., 55: 78–86.CrossRefGoogle Scholar
  5. Brücke, M. E., 1878, Ueber einige Empfindungen im Gebiet der Sehnerven. Sitz. Ber. d.K.K. Akad. d. Wissensch.,Math. Nat. Wiss. Classe, 77: 39–71.Google Scholar
  6. Burns, S. A., Elsner, A. E., Pokorny, J. and Smith, V. C., 1984, The Abney effect: Chromatic coordinates of unique and other constant hues. Vision Res., 24: 479–489.PubMedCrossRefGoogle Scholar
  7. Cornsweet, T. N., 1978, The Bezold-Brücke effect and its complement, hue constancy, in “Visual Psychophysics and Physiology,”, pp 233–244, Eds. J. C. Armington, J. Krauskopf, and B. R. Wooten, Academic Press, New York.Google Scholar
  8. De Valois, R. L., Abramov, I., and Jacobs, G. H., 1966, Analysis of response patterns of LGN cells. J. Opt. Soc. Am., 56: 966–977.PubMedCrossRefGoogle Scholar
  9. Derrington, A. M., Krauskopf, J., and Lennie, P., 1984, Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol., 357: 241–265.PubMedGoogle Scholar
  10. Graham, C. H. and Hsia, Y., 1969, Saturation and the foveal achromatic interval. J. Opt. Soc. Am., 59: 993–997.PubMedCrossRefGoogle Scholar
  11. Guth, L. and Hovis, J. K., 1986, Chromatic and achromatic contributions to BezoldBrücke effects. Invest. Ophthalmol. Vis. Sci. (Suppl.), 27: 206.Google Scholar
  12. Haupt, I. A., 1922, The selectiveness of the eye’s response to wave-length and its change with change of intensity. J. Exp. Psychol., 5: 347–379.CrossRefGoogle Scholar
  13. Helmholtz, H. von, 1911, “Handbuch der Physiologischen Optik. Third Ed.” pp. 154–155, Leopold Voss, Hamburg.Google Scholar
  14. Hurvich, L. M., 1980, “Color Vision” p. 73, Sinauer, Sundeland; Massachusetts.Google Scholar
  15. Hurvich, L. M. and Jameson, D., 1955, Some quantitative aspects of opponent-colors theory. II Brightness, saturation, and hue in normal and dichromatic vision. J.Opt. Soc. Am., 45: 602–616.PubMedCrossRefGoogle Scholar
  16. Ingling, C. R. and Tsou, B. H.-P., 1988, Spectral sensitivity for flicker and acuity criteria. J. Opt. Soc. Am., A 5: 1374–1378.Google Scholar
  17. Judd, D. B., 1951, An Essay on Color Vision, in “Experimental Psychology” ed. A. Linksz, 1964, Grune and Stratton, New York.Google Scholar
  18. Lee, B. B., Valberg, A., Tigwell, D. A. and Tryti, J., 1987, An account of responses of spectrally opponent neurones in macaque lateral geniculate nucleus to successive contrast. Proc. Roy. Soc. B, 230: 293–314.CrossRefGoogle Scholar
  19. Nagy, L: A:, 1979, Unique hues are not invariant with brief stimulus durations. Vision Res., 19: 1427–1432.PubMedCrossRefGoogle Scholar
  20. Padmos, P. and van Norren, D., 1975, Cone systems interactions in single neurones of the lateral geniculate nucleus of the macaque. Vision Res., 15: 617–619.PubMedCrossRefGoogle Scholar
  21. Purdy, D. McL., 1931a, Spectral hue as a function of intensity. Am. J. Psychol., 43: 541–559.CrossRefGoogle Scholar
  22. Purdy, D. McL., 1931b, On the saturations and chromatic thresholds of spectral colours. Brit. J. Psychology, 21: 283–313.Google Scholar
  23. Purdy, D. M., 1937, The Bezold-Brücke phenomenon and contours for constant hue. Am. J. Psychol., 49: 313–315.CrossRefGoogle Scholar
  24. Savoie, R. E., 1973, Bezold-Brücke effect and visual non-linearity. J. Opt. Soc. Am., 63: 1253–1261.PubMedCrossRefGoogle Scholar
  25. Swanson, W. H., Ueno, T., Smith, V. C., and Pokorny, J., 1987, Temporal modulation sensitivity and pulse detection thresholds for chromatic and luminance perturbations. J. Opt. Soc. Amer., 4: 1992–2005.CrossRefGoogle Scholar
  26. Trendelenburg, W., 1961, “Der Gesichtsinn”, p. 104, Springer, Berlin.Google Scholar
  27. Valberg, A. and Seim, T., 1983, Chromatic induction: responses of neurophysiological double opponent units?. Biol. Cybernetics, 46: 149–158.CrossRefGoogle Scholar
  28. Valberg, A., 1984, Die physiologische Verarbeitung von Licht-und Farbreizen. Farbe + Design, 31 /32: 7.Google Scholar
  29. Valberg, A., Lee, B. B., and Tryti, J., 1985, Computation of responses of opponent-cells in the macaque lateral geniculate nucleus to light stimuli varying in luminance, wavelength and purity, Report 85–29, Inst. of Physics, University of Oslo, Norway.Google Scholar
  30. Valberg, A., Lee, B. B. and Tryti, J., 1987a, Simulation of responses of spectrally-opponent neurones in the macaque lateral geniculate nucleus to chromatic and achromatic light stimuli. Vision Res., 27: 867–882.PubMedCrossRefGoogle Scholar
  31. Valberg, A., Seim, T., and Lee B.B., 1987b, A three-stage model of colour perception. Die Farbe, 34: 229–234Google Scholar
  32. Valberg, A., Seim, T., Lee, B. B. and Tryti, J., 1986, Reconstruction of equidistant color space from responses of visual neurones of macaques. J. Opt. Soc. Am., 3: 1726–1734.CrossRefGoogle Scholar
  33. Valberg, A. and Lee, B. B., 1989, Detection and discrimination of colour, a comparison of physiological and psychophysical data. Physica Scripta, 39: 178–186.CrossRefGoogle Scholar
  34. Vimal, R. L. P., Pokorny, J. and Smith, V. C., 1987, Appearance of steadily viewed lights. Vision Res., 27: 1309–1318.PubMedCrossRefGoogle Scholar
  35. Vimal, R. L. P., Pokorny, J., Smith, V. C., and Shevell, S. K., 1989, Foveal cone thresholds. Vision Res., 29: 61–78.PubMedCrossRefGoogle Scholar
  36. Vos, J. J., 1986, Are unique and invariant hues coupled? Vision Res., 2: 337–342.CrossRefGoogle Scholar
  37. Walraven, P. L., 1961, On the Bezold-Brücke phenomenon. J. Opt. Soc. Am., 51: 1113–1116.PubMedCrossRefGoogle Scholar
  38. Wiesel, T. N. and Hubel, D. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol., 29: 1115–1156.PubMedGoogle Scholar
  39. Wyszecki, G. and Stiles, W. S., 1982, “Color Science: Concepts and Methods Quantitative Data and Formulae” Wiley and Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Arne Valberg
    • 1
  • Thorstein Seim
    • 1
  1. 1.Department of Physics, Section of BiophysicsUniversity of OsloOslo 3Norway

Personalised recommendations