The Perceptual Significance of Cortical Organization

  • Peter Lennie
Part of the NATO ASI Series book series (NSSA, volume 203)

Abstract

Neurophysiologists are well aware of the limitations of single-unit recording in elucidating the functional organization of visual cortex: the technique provides us with information about the behavior of only one component in a complex network, and is subject to sampling biases. Moreover, there are good reasons to fear that even when we have learned a lot about the behavior of an individual cell, we will not understand much about its role in vision. A well-worn analogy would be trying to understand the role of a particular transistor in a computer by observing the voltage changes at its emitter. The recognition of these limitations has not diminished our reliance on single-unit recording as a source of ideas about the organization of cortex; indeed, the many impressive similarities between the visual sensitivities of individual neurons and those of psychophysical observers reinforce the notion that perception is simply and directly related to the activity of single units (Barlow, 1972). Two recent developments have prompted me to worry that we may have become a little too willing to overlook the limitations of single-unit recording.

Keywords

Retina Pyramid Nism Stim Glean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E. H., Simoncelli, E. and Hingorami, R., 1987, Orthogonal pyramid transforms for image coding, Proc. SPIE 845: 50.CrossRefGoogle Scholar
  2. Ballard, D. H., Hinton, G. E. and Sejnowski, T. J., 1983, Parallel visual computation, Nature. 306: 21.Google Scholar
  3. Barlow, H.B., 1972, Single units and sensation: a neuron doctrine for perceptual psychology? Perception 1:371.PubMedCrossRefGoogle Scholar
  4. Barlow, H.B., Blakemore, C. and Pettigrew, J.D., 1967, The neural mechanism of binocular depth discrimination, J. Physiol., 193:327.PubMedGoogle Scholar
  5. Barlow, H.B., Hill, R.M. and Levick, W.R., 1964, Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit,J. Physiol., 173:377.PubMedGoogle Scholar
  6. Barrow, H. G. and Tenenbaum, J. M., 1978, Recovering intrinsic scene characteristics from images, in:“Computer vision systems,” A. Hanson and E. Riseman, eds., Academic Press, New York.Google Scholar
  7. Barrow, H. G. and Tenenbaum, J. M., 1981, Computational vision, Proc. IEEE, 69:572.CrossRefGoogle Scholar
  8. Burt, P. J. and Adelson, E. H., 1983, The laplacian pyramid as a compact image code, IEEE Trans Commun.COM-31:532CrossRefGoogle Scholar
  9. Derrico, J. B. and Buchsbaum, G., 1990, Spatial and chromatic properties of cortical mechanisms in V1 correspond to the principal components of natural color images, Invest. Ophthal. Vis. Sci.,31:264(suppl.)Google Scholar
  10. DeYoe, E. A. and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature, 317: 36.Google Scholar
  11. DeYoe, E. A. and Van Essen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219.Google Scholar
  12. Dubner, R. and Zeki, S. M., 1971, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res., 35:528PubMedCrossRefGoogle Scholar
  13. Dyer, C. R., 1987, Multiscale image understanding, in: “Parallel computer vision,” L. Uhr, ed.,Academic Press, Orlando.Google Scholar
  14. Emerson, R.C., Citron, M.C., Vaughn, W.J. and Klein, S.A., 1987, Nonlinear directionally selective subunits in complex cells of cat striate cortex, J. Neurophysiol., 58:33.PubMedGoogle Scholar
  15. Felleman, D. J. and Van Essen, D. C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex,J. Neurophysiol., 57:889PubMedGoogle Scholar
  16. Field, D.J., Relations between the statistics of natural images and the response properties of cortical cells,T. Opt. Soc. Am. A,4:2379.CrossRefGoogle Scholar
  17. Graham, N. V., 1989, “Visual Pattern Analyzers,” Oxford University Press, Oxford.CrossRefGoogle Scholar
  18. von der Heydt, R. and Peterhans, E., 1989, Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity, J. Neuroscience, 9:1731Google Scholar
  19. Heywood, C. A. and Cowey, A., 1987, On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys, J. Neurosci., 7:2601.Google Scholar
  20. Lennie, P., Krauskopf, J., and Sclar, G., 1990, Chromatic mechanisms in striate cortex of macaque, J Neurosci. 10: 649.Google Scholar
  21. Levitt, J. B. and Movshon, J. A., 1990, Homogeneity of response properties of neurons of macaque V2, Invest. Ophthal. Vis. Sci., 31:89(suppl.)Google Scholar
  22. Livingstone, M. S. and Hubel., D. H., 1987, Psychophysical evidence for separate channels for the perception of form, color, movement and depth, J. Neurosci., 7:3416.Google Scholar
  23. Marr, D. and Hildreth, E., 1980, Theory of edge detection,Phil. Trans. R. Soc. Lond. B., 290:199.CrossRefGoogle Scholar
  24. Marr, D. and Poggio, T., 1979, A computational theory of human stereo vision, Proc. R. Soc. Lond. B., 204:301.Google Scholar
  25. Marr, D., 1982, “Vision,” Freeman, San Francisco.Google Scholar
  26. Maunsell, J. H. R. and Van Essen, D. C., 1983, The connections of the middle temporal area (MT) and their relationship to a cortical hierarchy in the macaque monkey, T. Neurosci., 3:2563.Google Scholar
  27. Movshon, J.A. and Lennie, P., 1979, Pattern-selective adaptation in visual cortical neurones, Nature,278:850.PubMedCrossRefGoogle Scholar
  28. Newsome, W. T and Paré, E.B., 1988, A selective impairment of motion perception following lesions of the middle temporal area (MT), J Neurosci. 8: 2201.PubMedGoogle Scholar
  29. Newsome, W. T., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal area of the macaque monkey, J Neurosci.. 5: 825.Google Scholar
  30. Pentland, A., 1989, Shape information from shading: a theory about human perception, Spatial Vision, 4:1655.Google Scholar
  31. Shapley, R. M. and Lennie, P., 1985, Spatial frequency analysis in the visual system,Ann. Rev. Neurosci., 8:547Google Scholar
  32. Shipp, S. and Zeki, S. M., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature, 315: 322.Google Scholar
  33. Spitzer, H. and Hochstein, S., 1985, A complex-cell receptive field model, J. Neurophysiol., 53:1266.Google Scholar
  34. Ungerleider, L. G. and Mishkin, M., 1982, Two cortical visual systems, in “Analysis of visual behavior,” D. J. Ingle, M.A. Goodale and R.W.J. Mansfield eds., MIT Press, Cambridge.Google Scholar
  35. Van Essen, D.C., DeYoe, E.A., Olavarria, J.F., Knierim, J.J., Fox, J.M., Sagi, D. & Julesz, B., 1990, Neural responses to static and moving texture patterns in visual cortex of the macaque monkey, in “Neural mechanisms of visual perception,” D. M-K. Lam and C.D. Gilbert, eds., Portfolio, Woodlands, Texas.Google Scholar
  36. Watson, A.B., 1987, Efficiency of a model human image code, I. Opt. Soc. Am. A. 4:2401.Google Scholar
  37. Wild, H. M., Butler, S. R., Carden, D., and Kulikowski, J. J., 1985, Primate cortical area V4 important for colour constancy but not wavelength discrimination, Nature, 313: 133.Google Scholar
  38. Zeki, S. M., 1973, Color coding in rhesus monkey prestriate cortex, Brain Res., 53: 422.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Peter Lennie
    • 1
  1. 1.Center for Visual ScienceUniversity of RochesterRochesterUSA

Personalised recommendations