Occupational Stress and Blood Pressure

Studies in Working Men and Women
  • Thomas G. Pickering
  • Gary D. James
  • Peter L. Schnall
  • Yvette R. Schlussel
  • Carl F. Pieper
  • William Gerin
  • Robert A. Karasek
Part of the The Plenum Series on Stress and Coping book series (SSSO)


The idea that stress may contribute to the development of high blood pressure and heart disease has been considered for many years, but convincing evidence for such an association has been difficult to find. One reason for this is that blood pressure is not a fixed entity but varies considerably from one moment to another. Furthermore, the conventional methods of measuring blood pressure, which typically involve a small number of readings taken in circumstances that are not representative of the normal daily environment, may result in distorted estimates of the true level.


Leave Ventricular Hypertrophy Ambulatory Blood Pressure Ambulatory Blood Pressure Monitoring Occupational Stress Hypertension Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfredsson, L., Karasek, R., & Theorell, T. (1982). Myocardial infarction risk and psychosocial work environment: An analysis of the male Swedish working force. Social Science and Medicine, 16, 463–467.PubMedCrossRefGoogle Scholar
  2. Athanassiadis, D., Draper, G. J., Honour, A. J., & Cranston, W. I. (1969). Variability of automatic blood pressure measurements over 24-hour period. Clinical Science, 36, 147–156.PubMedGoogle Scholar
  3. Baba, S., Ozawa, H., Nakamoto, Y., Ueshima, H., & Omae, T. (1990). Enhanced blood pressure response to regular daily stress in urban hypertensive men. Journal of Hypertension, 8, 647–655.CrossRefGoogle Scholar
  4. Buring, J. E., Evans, D. A., Fiore, M., Rosner, B., & Henneberg, C. H. (1987). Occupation and risk of death from coronary heart disease. Journal of the American Medical Association, 258, 791–792.PubMedCrossRefGoogle Scholar
  5. Casale, P. N., Devereux, R. B., Milner, M., Zullo, G., Harshfield, G. A., Pickering, T. G., & Laragh, J. H. (1986). Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Annals of Internal Medicine, 105, 173–178.PubMedGoogle Scholar
  6. Clark, L. A., Denby, L., Pregibon, D., Harshfield, G. A., Pickering, T. G., Blank, S., & Laragh, J. H. (1987). A quantitative analysis of the effects of activity and time of day on the diurnal variations of blood pressure. Journal of Chronic Diseases, 40, 671–681.PubMedCrossRefGoogle Scholar
  7. Cohen, J. L., Gupta, P. K., Lichstein, E., & Chadda, K. D. (1980). The heart of a dancer: Noninvasive cardiac evaluation of professional ballet dancers. American Journal of Cardiology, 45, 959–965.PubMedCrossRefGoogle Scholar
  8. Devereux, R. B. (1987). Detection of left ventricular hypertrophy by M-mode echocardiography. Anatomic validation, standardization, and comparison to other methods. Hypertension, 9, (Suppl. II), 19–26.Google Scholar
  9. Devereux, R. B., Pickering, T. G., Harshfield, G. A., Kleinert, H. D., Denby, L., Clark, L., Pregibon, D., Jason, M. N., Kleiner, B., Borer, J. S., & Laragh, J. H. (1983). Left ventricular hypertrophy in patients with hypertension: Importance of blood pressure response to regularly recurring stress. Circulation, 68, 470–476.PubMedCrossRefGoogle Scholar
  10. Drayer, J. I. M., Weber, M. A., & De Young, J. L. (1983). BP as a determinant of cardiac left ventricular muscle mass. Archives of Internal Medicine, 143, 90–92.PubMedCrossRefGoogle Scholar
  11. Eaker, E. D., Packard, B., Wenger, N. K., Clarkson, T. B., & Tyroler, H. A. (1988). Coronary artery disease in women. American Journal of Cardiology, 61, 641–644.PubMedCrossRefGoogle Scholar
  12. Esler, M., Julius, S., Zweifler, A., Randall, O., Harburg, E., Gardiner, H., & De Quattro, V. (1977). Mild high-renin essential hypertension: Neurogenic human hypertension? New England Journal of Medicine, 296, 405–411.PubMedCrossRefGoogle Scholar
  13. Frankenhaeuser, M. (1983). The sympathetic-adrenal and pituitary-adrenal response to challenge: Comparison between the sexes. In T. M. Dembroski, T. H. Schmidt, & G. Blumchen (Eds.), Biobehavioral bases of coronary heart disease (pp. 91–105). Basel: Karger.Google Scholar
  14. Frankenhaeuser, M., Lundberg, U., Fredrikson, M., Melin, B., Toumisto, M., Mersten, A-L., Bergman-Losman, B., Hedman, M., & Wallin, L. (1989). Stress on and off the job as related to sex and occupational status in white-collar workers. Journal of Organizational Behavior, 10, 321–326.CrossRefGoogle Scholar
  15. Harburg, E., Erfurt, J. C., Hauenstein, L. S., Cahpe, C., Schull, W. J., & Schork, M. A. (1973). Socioecological stress, suppressed hostility, skin color, and black-white male blood pressure: Detroit. Psychosomatic Medicine, 35, 276–296.PubMedGoogle Scholar
  16. Haynes, S. G., & Feinlieb, M. (1980). Women, work and coronary heart disease: Prospective findings from the Framingham Heart Study. American Journal of Public Health, 70, 133–141.PubMedCrossRefGoogle Scholar
  17. Hypertension Detection and Follow-up Program Cooperative Group. (1987). Educational level and 5-year all-cause mortality in the Hypertension Detection and Follow-up Program. Hypertension, 9, 641–646.CrossRefGoogle Scholar
  18. James, G. D. (1989). Perceived work stress increases daily blood pressure and catecholamine variation in young, healthy women. Presented at the Tenth Annual meeting of the Society of Behavioral Medicine.Google Scholar
  19. James, G. D., Cates, E. M., Pickering, T. G., & Laragh, J. H. (1989). Parity and perceived job stress elevate blood pressure in young normotensive working women. American Journal of Hypertension, 2, 637–639.PubMedGoogle Scholar
  20. James, G. D., Pickering, T. G., Yee, L. S., Harshfield, G. A., Riva, S., & Laragh, J. H. (1988). The reproducibility of average ambulatory, home, and clinic pressures. Hypertension, 11, 545–549.PubMedCrossRefGoogle Scholar
  21. James, G. D., Yee, L. S., Harshfield, G. A., Blank, S. G., & Pickering, T. G. (1986). The influence of happiness, anger, and anxiety on the blood pressure of borderline hypertensives. Psychosomatic Medicine, 48, 502–508.PubMedGoogle Scholar
  22. James, G. D., Yee, L. S., Harshfield, G. A., & Pickering, T. G. (1988b). Sex differences in factors affecting the daily variation in blood pressures. Social Science and Medicine, 26, 1019–1023.CrossRefGoogle Scholar
  23. Julius, S., Li, L., Brant, D., Krause, L., & Buda, A. J. (1989). Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Journal of Hypertension, 13, 422–429.CrossRefGoogle Scholar
  24. Julius, S., Schneider, R., & Egan, B. (1985). Suppressed anger in hypertension: Facts and problems. In M. A. Chesney & R. H. Rosenman (Eds.), Anger and hostility in cardiovascular and behavioral disorders (pp. 127–137). Washington, DC: McGraw-Hill.Google Scholar
  25. Kahn, H. A., Medalie, J. H., Neufeld, N. J., Riss, E., & Goldbourt, U. (1972). The incidence of hypertension and associated factors: The Israeli Ischemic Heart Disease Study. American Heart Journal, 84, 171–182.PubMedCrossRefGoogle Scholar
  26. Karasek, R., Baker, D., Marxer, E., Ahlbohm, A., & Theorell, T. (1981). Job decision latitude, job demands, and cardiovascular disease: A prospective study of Swedish men. American Journal of Public Health, 75, 694–705.CrossRefGoogle Scholar
  27. Karasek, R. A., Theorell, T., Schwartz, J. E., Schnall, P. L., Pieper, C. E., & Michela, J. L. (1988). Job characteristics in relation to the prevalence of myocardial infarction in the U.S. Health Examination Survey (HES) and the Health and Nutrition Examination Survey (HANES). American Journal of Public Health, 78, 910–918.PubMedCrossRefGoogle Scholar
  28. Karasek, R. A., Theorell, T. G. T., Schwartz, J., Pieper, C., & Alfredsson, L. (1982). Job, psychological factors and coronary heart disease. Advances in Cardiology, 29, 62–67.PubMedGoogle Scholar
  29. McMahon, S. (1987). Alcohol consumption and hypertension. Hypertension, 9, 111–121.CrossRefGoogle Scholar
  30. Miall, W. E. (1987). Some personal factors influencing arterial blood pressure. In J. Stamler, R. Stamler, & T. N. Pullman (Eds.), The epidemiology of hypertension (pp. 69–60). New York: Grune & Stratton.Google Scholar
  31. Millar-Craig, M. W., Bishop, C. N., & Raftery, E. B. (1978). Circadian rhythm of blood pressure. Lancet, 1, 795.PubMedCrossRefGoogle Scholar
  32. Morganroth, J., Mason, B. J., Henry, W. L., & Epstein, S. E. (1975). Comparative left ventricular dimensions in trained athletes. Annals of Internal Medicine, 82, 521–524.PubMedGoogle Scholar
  33. Pickering, T. G., & Gerin, W. (1988). Ambulatory blood pressure monitoring and cardiovascular reactivity testing for the evaluation of the role of psychosocial factors and prognosis in hypertensive patients. American Heart Journal, 116, 655–672.Google Scholar
  34. Pickering, T. G., & Gerin, W. (1990). Cardiovascular reactivity in the laboratory and the role of behavioral factors in hypertension: A critical review. Annals of Behavioral Medicine, 12, 3–16.CrossRefGoogle Scholar
  35. Pickering, T. G., Harshfield, G. A., Devereux, R. B., & Laragh, J. H. (1985). What is the role of ambulatory blood pressure monitoring in the management of hypertensive patients? Hypertension, 7, 171–177.PubMedCrossRefGoogle Scholar
  36. Pickering, T. G., Harshfield, G. A., Kleinert, H. D., Blank, S., & Laragh, J. H. (1982). Blood pressure during normal daily activities, sleep and exercise. Comparison of values in normal and hypertensive subjects. Journal of the American Medical Association, 247, 992–996.PubMedCrossRefGoogle Scholar
  37. Rose, G., & Marmot, M. G. (1981). Social class and coronary heart disease. British Heart Journal, 45, 13–19.PubMedCrossRefGoogle Scholar
  38. Rowlands, D. B., Glover, D. R., Leland, M. A., McLevy, R. A. B., Stallard, T. H., Watson, R. D. S., & Littler, W. A. (1982). Assessment of left ventricular mass and its response to antihypertensive treatment. Lancet, 1, 467–470.PubMedCrossRefGoogle Scholar
  39. Schlussel, Y. R., Schnall, P. L., Zimbler, M., Warren, K., & Pickering, T. G. (1990). The effect of work environments on blood pressure. Evidence from seven New York organizations. Journal of Hypertension, 8, 679–685.PubMedCrossRefGoogle Scholar
  40. Schnall, P. L., Pieper, C., Schwartz, J. E., Karasek, R. A., Schlussel, Y., Devereux, R. B., Ganav, A., Alderman, M., Warren, K., & Pickering, T. G. (1990). The relationship between “job strain,” workplace diastolic blood pressure, and left ventricular mass index. Results of a case-control study. Journal of the American Medical Association, 263, 1929–1935.PubMedCrossRefGoogle Scholar
  41. Sundberg, S., Kohvakka, A., & Gordon, A. (1988). Rapid reversal of circadian blood pressure rhythm in shift workers. Journal of Hypertension, 6, 393–396.PubMedCrossRefGoogle Scholar
  42. Van den Meiracker, A. H., Man In’tveld, A. J., Ritsema van Eck, H., Wenting, G. H., & Schalekamp, M. A. D. H. (1988). Determinants of short-term blood pressure variability: Effects of bed rest and sensory deprivation in essential hypertension. American Journal of Hypertension, 1, 22–26.PubMedGoogle Scholar
  43. Williams, R. B., (1984). Type A behavior and coronary heart disease: Something old, something new. Behavioral Medicine Update, 6, 29–35.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Thomas G. Pickering
    • 1
  • Gary D. James
    • 1
  • Peter L. Schnall
    • 1
  • Yvette R. Schlussel
    • 1
  • Carl F. Pieper
    • 1
  • William Gerin
    • 1
  • Robert A. Karasek
    • 2
  1. 1.Cardiovascular CenterThe New York Hospital Cornell Medical CenterNew YorkUSA
  2. 2.Institute of PsychologyUniversity of AarhusRisskovDenmark

Personalised recommendations