Overview of Ion Spectroscopies for Surface Compositional Analysis

  • A. W. Czanderna
Part of the Methods of Surface Characterization book series (MOSC, volume 2)

Abstract

The purposes of this chapter are (1) to provide a brief overview of the role of surface compositional analysis (i.e., surface analysis) in surface characterization, (2) to provide a brief overview of the methods of surface analysis involving ion bombardment of a solid or ion detection, and (3) to discuss briefly each of the methods of surface analysis using the ion spectroscopies that are not treated by the other chapters in this volume.Comparisons and contrasts of the most widely used methods of surface analysis are discussed in Chapter 7 of this volume. Extensive literature citations are provided, so that further details about surface analysis methods can be obtained. Both the surface (i.e., the outer monolayer of atoms on a solid)and the interface (i.e., the boundary between two compositionally different solids) are included in the term “surface” as it is used in this chapter.

Keywords

Entropy Porosity Dust Argon Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. O. Hayward and B. M. W. Trapnell, Chemisorption, Butterworths, London (1964); F. C. Tompkins, Chemisorption of Gases on Metals, Academic, New York (1978); T. N. Rhodin and G. Ertl, Nature of the Surface Chemical Bond, NorthHolland, Amsterdam (1979).Google Scholar
  2. 2.
    E. A. Flood, ed., The Solid-Gas Interface, Vols. 1 and 2, Dekker, New York (1967).Google Scholar
  3. 3.
    R. B. Anderson, ed., Experimental Methods in Catalytic Research, Academic, New York (1968).Google Scholar
  4. 4.
    M. Green, ed., Solid State Surface Science, Dekker, New York (1969).Google Scholar
  5. 5.
    R. F. Gould, ed., Interaction of Liquids at Solid Surfaces, ACS Publications, Washington, D.C. (1968).Google Scholar
  6. 6.
    J. R. Anderson, ed., Chemisorption and Reactions on Metallic Films, Vols. I and II, Academic, New York (1969 and 1971).Google Scholar
  7. 7.
    K. L. Chopra, Thin Film Phenomena, Krieger, New York (1970).Google Scholar
  8. 8.
    G. A. Somorjai, Principles of Surface Chemistry, Prentice-Hall, Englewood Cliffs, New Jersey (1972).Google Scholar
  9. 9.
    J. M. Blakely, Introduction to the Properties of Crystal Surfaces, Pergamon Press, Oxford (1973).Google Scholar
  10. 10.
    A. W. Adamson, Physical Chemistry of Surfaces, Wiley-Interscience, New York (1982).Google Scholar
  11. 11.
    P. F. Kane and G. B. Larrabee, eds., Characterization of Solid Surfaces, Plenum, New York (1974).Google Scholar
  12. 12.
    A. W. Czanderna, ed., Methods of Surface Analysis, Elsevier, Amsterdam (1975).Google Scholar
  13. 13.
    N. B. Hannay, ed., Treatise on Solid State Chemistry, Vols. 6A and 6B, Surfaces, Plenum, New York (1976).Google Scholar
  14. 14.
    R. Vanselow and others, eds., Chemistry and Physics of Solid Surfaces, Vols. I, 11, and III, CRC Press, Cleveland (1977, 1979, and 1982); Vois. IV, V, VI, and VII, Springer-Verlag, Berlin (1982, 1984, 1986, and 1988).Google Scholar
  15. 15.
    S. R. Morrison, The Chemical Physics of Surfaces, Plenum, New York (1977).Google Scholar
  16. 16.
    J. E. E. Baglin and J. E. Poate, eds., Thin Film Phenomena-Interfaces and Interactions, Proc. Electrochem. Soc., 78-2 (1978).Google Scholar
  17. 17.
    R. W. Roberts and T. A. Vanderslice, Ultrahigh Vacuum and Its Applications, Prentice-Hall, Englewood Cliffs, New Jersey (1963).Google Scholar
  18. 18.
    H. Werner, in: Electron and Ion Spectroscopy of Solids (L. Fiermans, J. Vennik, and W. Dekeyser, eds.), p. 419, Plenum, New York (1978).Google Scholar
  19. 19.
    C. B. Duke, in: Industrial Applications of Surface Analysis (L. Casper and C. Powell, eds.,) p. 12, American Chemical Society, Washington, D.C. (1982).Google Scholar
  20. 20.
    R. W. Balluffi, G. R. Woolhouse, and Y. Komen, in: The Nature and Behavior of Grain Boundaries (H. Hu, ed.), p. 41, Plenum, New York (1972).Google Scholar
  21. 21.
    J. O’M. Bockris, Mat. Sci. Eng. 53,47 (1982).Google Scholar
  22. 22.
    A. W. Czanderna, J. Vac. Sci. Technol. 17,72(1980).Google Scholar
  23. 23.
    S. Brunauer, P. Emmett, and E. Teller, J. Am. Chem. Soc. 60,309 (1938).Google Scholar
  24. 24.
    E. Robens, in: Microweighing in Vacuum and Controlled Environments (A. W. Czanderna and S. P. Wolsky, eds.), p. 127, Elsevier, Amsterdam (1980).Google Scholar
  25. 25.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, Academic, New York (1982).Google Scholar
  26. 26.
    A. W. Czanderna and R. Vasofsky, Prog. Surf. Sci. 9,45 (1979).Google Scholar
  27. 27.
    R. Shuttleworth, Proc. R. Soc. London 62A, 167 (1949).Google Scholar
  28. 28.
    G. C. Benson and K. S. Yun, in: The Solid-Gas Interface (E. A. Flood, ed.), Vol. 1, p. 203, Dekker, New York (1967).Google Scholar
  29. 29.
    C. Duke, Crit. Rev. Solid State Matts. Sci. 8, 69 (1978).Google Scholar
  30. 30.
    J. T. Yates, Jr. and T. E. Madey, eds., Vibrational Spectroscopy of Molecules on Surfaces, Plenum, New York (1987).Google Scholar
  31. 31.
    A. Roth, Vacuum Technology, North-Holland, Amsterdam (1976).Google Scholar
  32. 32.
    A. W. Czanderna, C. J. Powell, and T. E. Madey, eds., Sample Handling, Beam Artifacts, and Depth Profiling, Plenum, New York. (in preparation).Google Scholar
  33. 33.
    H. F. Winters, in: Radiation Effects on Solid Surfaces (M. Kaminsky, ed.), p. 1,. American Chemical Society, Washington, D.C. (1976).Google Scholar
  34. 34.
    J. A. McHugh, in: Methods of Surface Analysis (A. W. Czanderna, ed.), p. 223, Elsevier, Amsterdam (1975).Google Scholar
  35. 35.
    G. K. Wehner, in: Methods of Surface Analysis (A. W. Czanderna, ed.), p. 1, Elsevier, Amsterdam (1975).Google Scholar
  36. 36.
    R. E. Honig, Thin Solid Films 31, 89 (1976).Google Scholar
  37. 37.
    G. P. Chambers and J. Fine, “Evaluated Absolute Elemental Sputtering YieIds for Surface Analysis,” J. Phys. Chem. Ref Data (to be published).Google Scholar
  38. 38.
    S. Hofmann, in: Practical Surface Analysis by AES and XPS (O. Briggs and M. P. Seah, eds.), pp. 141–179, Wiley, New York (1983).Google Scholar
  39. 39.
    L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, pp. 69–96, North-Holland, Amsterdam (1986).Google Scholar
  40. 40.
    A. Benninghoven, F. G. Rüdenauer, and H. W. Werner, Secondary Ion Mass Spectrometry, pp. 761-912 (COP) or 937-949 (SNMS), Wiley, New York (1987).Google Scholar
  41. 41.
    A. W. Czanderna, Solar Energy Mat. 5,349 (1981).Google Scholar
  42. 42.
    O. Lichtman, in: Methods of Surface Analysis (A. W. Czanderna, ed.), p. 39, Elsevier, Amsterdam (1975).Google Scholar
  43. 43.
    R. F. K. Herzog and R. P. Viehböck, Phys. Rev. 76, 855 (1949).Google Scholar
  44. 44.
    R. E. Honig, J. Appl. Phys. 29, 549 (1958).Google Scholar
  45. 45.
    G. Blaise, in: Materials Characterization Using Ion Beams (J. P. Thomas and A. Cachard, eds.), p. 143, Plenum, New York (1978).Google Scholar
  46. 46.
    H. Werner, in: Electron and Ion Spectroscopy of Solids (L. Fierrnans, J. Vennik, and W. Oekeyser, eds.), p. 324, Plenum, New York (1978).Google Scholar
  47. 47.
    J. M. Morabito and R. K. Lewis, in: Methods of Surface Analysis (A. W. Czanderna, ed.), p. 279, Elsevier, Amsterdam (1975).Google Scholar
  48. 48.
    C. W. Magee, W. L. Harrington, and R. E. Honig, Rev. Sci. Instrum. 49, 477 (1978).Google Scholar
  49. 49.
    A. Benninghoven et al., eds., Secondary Ion Mass Spectrometry, SIMS 11, SIMS 111, SIMS IV, and SIMS V, Springer Series in Chemical Physics, Vols. 9, 19, 36, and 44, Springer-Verlag, Berlin (1979, 1982, 1984, and 1986, respectively); SIMS VI, Wiley, New York (1988).Google Scholar
  50. 50.
    D. P. Smith, J. Appl. Phys. 38,340 (1967).Google Scholar
  51. 51.
    D. P. Smith, Surf. Sci. 25, 171 (1971).Google Scholar
  52. 52.
    H. H. Brongersma, J. Vac. Sci. Technol. 11,231 (1974).Google Scholar
  53. 53.
    T. M. Buck, in: Methods of Surface Analysis, (A. W. Czanderna, ed.), p. 75, Elsevier, Amsterdam (1975).Google Scholar
  54. 54.
    E. Taglauer and W. Heiland, Appl. Phys. 9,261 (1976).Google Scholar
  55. 55.
    E. Taglauer and W. Heiland, in: Applied Surface Analysis (T. L. Barr and L. E. Davis, eds.), p. 111, ASTM, Philadelphia, Pennsylvania (1980).Google Scholar
  56. 56.
    A. C. Miller, in: Treatise on Analytical Chemistry, Pt. 1 (J. O. Winefordner, ed.), Vol. 11, 2nd Ed., p. 253, Wiley, New York (1989).Google Scholar
  57. 57.
    T. Rusch and R. L. Erickson, in: Inelastic Ion Surface Collisions (N. H. Tolk, J. C. Tully, W. Heiland, and C. W. White, eds.), p. 73, Academic, New York (1977).Google Scholar
  58. 58.
    S. Rubin and V. K. Rasmusen, Phys. Rev. 78, 83 (1950).Google Scholar
  59. 59.
    W. K. Chu, J. W. Mayer, and M-A. Nicolet, Backscattering Spectrometry, Academic, New York (1978).Google Scholar
  60. 60.
    T. A. Cahill, Ann. Rev. Nucl. Part. Sci. 30, 211 (1980).Google Scholar
  61. 61.
    E. T. Williams, Nucl. Instrum. Methods Phys. Res. 83, 211 (1980).Google Scholar
  62. 62.
    C. W. White, E. W. Thomas, W. F. Van der Weg, and N. H. Tolk, in: Inelastic Ion-Surface Collisions (N. H. Tolk, J. Tully, W. Heiland, and C. W. White, eds.), pp. 201–252, Academic, New York (1977).Google Scholar
  63. 63.
    G. Betz, Nucl. Instrum. Methods Phys. Res. 827, 104 (1987).Google Scholar
  64. 64.
    H. O. Hagstrum, Phys. Rev. 96, 335 (1954).Google Scholar
  65. 65.
    H. O. Hagstrum, Phys. Rev. 150, 495 (1966).Google Scholar
  66. 66.
    H. O. Hagstrum and G. E. Becker, Phys. Rev. B4, 4187 (1971).Google Scholar
  67. 67.
    H. O. Hagstrum, in: Electron and Ion Spectroscopy of Solids (L. Fierrnans, J. Vennik, and W. Dekeyser, eds.), pp. 273–323, Plenum, New York (1978).Google Scholar
  68. 68.
    C. A. Moyer and K. Orvek, Surf. Sci. 114, 295 (1982); and 121, 138 (1983).Google Scholar
  69. 69.
    J. W. Cobum and E. Kay, Appl. Phys. Lett. 19,350 (1971).Google Scholar
  70. 70.
    R. E. Honig, in: Advances in Mass Spectrometry (J. D. Waldron, ed.), Vol. 1, p. 162, Pergamon Press, London (1959).Google Scholar
  71. 71.
    A. Benninghoven and F. Kirchner, Z. Natforsch. 18a, 1008 (1963).Google Scholar
  72. 72.
    H. Oechsner, in: Thin Film and Depth Profile Analysis (H. Oechsner, ed.), pp. 63–85, Springer-Verlag, Berlin (1984).Google Scholar
  73. 73.
    D. Lipinsky, R. Jede, O. Ganschow, and A. Benninghoven, J. Vac. Sci. Technol. A3,2007 (1985).Google Scholar
  74. 74.
    C. H. Becker and K. T. Gillen, Anal. Chem. 56, 1671 (1984); Appl. Phys. Lett. 45, 1063 (1984).Google Scholar
  75. 75.
    D. M. Gruen, M. J. Pellin, C. E. Young, and M. H. Mendelsohn, Phys. Ser. T6, 42 (1983).Google Scholar
  76. 76.
    C. E. Young, M. J. Pellin, W. F. Calaway, B. Jørgensen, E. L. Schweitzer, and D. M. Gruen, Nucl. Instrum. Methods Phys. Res. 827, 119 (1987).Google Scholar
  77. 77.
    J. W. Bumett, J. P. Biersack, D. M. Gruen, B. Jørgensen, A. R. Krauss, M. J. Pellin, E. L. Schweitzer, J. T. Yates, Jr., and C. E. Young, J. Vac. Sci. Technol. A6,2064 (1988).Google Scholar
  78. 78.
    D. Lichtman and R. B. McQuistan, Prog. Nucl. Energy, Ser. IX 4 (pt. 2), 95 (1965).Google Scholar
  79. 79.
    T. E. Madey and J. T. Yates, Jr., J. Vac. Sci. Technol. 8,525 (1971).Google Scholar
  80. 80.
    N. H. Tolk, M. M. Traum, J. C. Tully, and T. E. Madey, eds., Desorption Induced by Electronic Transitions, DIET I, Springer-Verlag, Berlin (1983); W. Brenig and D. Menzel, eds., DIET II and DIET III, Springer-Verlag, Berlin (1985, 1987); D. Menzel, Nucl. Instrum. Methods Phys. Res. 813, 507 (1986).Google Scholar
  81. 81.
    Ph. Avouris, F. Bozso, and R. E. Walkup, Nucl. Instrum. Methods Phys. Res. 827,136 (1987).Google Scholar
  82. 82.
    T. E. Madey, in: Inelastic Particle-Surface Collisions (E. Taglauer and W. Heiland, eds.), pp. 80–103, Springer-Verlag, Berlin (1981).Google Scholar
  83. 83.
    T. E. Madey, Science 234, 316 (1986).Google Scholar
  84. 84.
    J. T. Yates, Jr., M. D. Alvey, K. W. Kolasinski, and M. J. Dresser, Nucl. Instrum. Methods Phys. Res. 827, 147 (1987).Google Scholar
  85. 85.
    F. Hillencamp, E. Unsoeld, R. Kaufmann, and R. Nitsche, Appl. Phys. 8,341 (1975).Google Scholar
  86. 86.
    F. Hillencamp, in: Secondary Ion Mass Spectrometry (SIMS V), (A. Benninghoven, R. J. Colton, D. S. Simons, and H. W. Wemer, eds.), p. 471, Springer-Verlag, Berlin (1986).Google Scholar
  87. 87.
    J. A. J. Jansen and A. W. Witmer, Spectrochim. Acta 378, 483 (1983).Google Scholar
  88. 88.
    S. W. Graham, P. Dowd, and D. M. Hercules, Anal. Chem. 54,649 (1982).Google Scholar
  89. 89.
    B. Schueler and R. W. Odom, J. Appl. Phys. 61, 4652 (1987).Google Scholar
  90. 90.
    R. W. Odom and B. Schueler, Thin Solid Films 153,1 (1987).Google Scholar
  91. 91.
    J. A. Leys, in: Desorption Mass Spectrometry (P. A. Lyon, ed.), pp. 145–159, ACS Symposium Series No. 291, American Chemical Society, Washington, DC (1985).Google Scholar
  92. 92.
    D. J. Surman and J. C. Vickerman, Appl. Surf. Sci. 9, 108 (1981).Google Scholar
  93. 93.
    V. N. Klaus, Vakuum Technik 31, 106 (1982).Google Scholar
  94. 94.
    M. Barber, R. Bordoli, R. Sedgwick, and A. Taylor, Nature 293, 270 (1981).Google Scholar
  95. 95.
    T. M. Thomas, H. Neumann, A. W. Czandema, and J. R. Pitts, Surf. Sci. 175, L737 (1986).Google Scholar
  96. 96.
    R. Souda, M. Aono, C. Oshima, S. Otani, and Y. Ishizawa, Surf. Sci. 150,59 (1985).Google Scholar
  97. 97.
    M. Aono and R. Souda, Nucl. Instrum. Methods Phys. Res. 827,55 (1987).Google Scholar
  98. 98.
    E. W. Müller, in: Methods of Surface Analysis (A. W. Czandema, ed.), pp. 329–378, Elsevier, Amsterdam (1975).Google Scholar
  99. 99.
    T. T. Tsong, Surf. Sci. Rep. 8, 127 (1988).Google Scholar
  100. 100.
    J. A. Panitz, A. L. Pregenzer, and R. A. Gerber, J. Vac. Sci. Technol. A7, 64 (1989).Google Scholar
  101. 101.
    T. T. Tsong, S. B. McLane, and T. J. Kinkus, Rev. Sci. Instrum. 53, 1442 (1982).Google Scholar
  102. 102.
    E. W. Müller, J. A. Panitz, and S. B. MeLane, Rev. Sci. Instrum. 39,83 (1968).Google Scholar
  103. 103.
    A. W. Czandema, ed., Methods of Surface Analysis, Elsevier, Amsterdam (1975).Google Scholar
  104. 104.
    T. T. Tsong, J. Vac. Sci. Technol. A7, 1758 (1989).Google Scholar
  105. 105.
    J. H. Block, Z. Phys. Chem. (NF) 39, 169 (1963).Google Scholar
  106. 106.
    J. H. Block and A. W. Czandema, in: Methods of Surface Analysis (A. W. Czandema, ed.), pp. 379–446, Elsevier, Amsterdam (1975).Google Scholar
  107. 107.
    J. H. Block, in: Chemistry and Physics of Solid Surfaces VI (R. Vanselow and R. Howe, eds.), Springer-Verlag, Berlin (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. W. Czanderna
    • 1
  1. 1.Applied Sciences BranchSolar Energy Research InstituteGoldenUSA

Personalised recommendations