Skip to main content

Differential Hybridization Analysis as a Tool to Study Prostatic Cancer Metastasis

  • Chapter
Molecular and Cellular Biology of Prostate Cancer

Abstract

The progression of prostate cancer can be described in terms of growth rate, hormone responsiveness, histology and metastatic ability. Some of these parameters can be interdependent. Clearly, metastatic ability of tumor cells is clinically most significant. It is this process in which primary tumor cells spread through the body and grow out at secondary sites that leads to much of lethality due to cancer. For prostate cancer the clinical consequences of established metastatic disease are profound, since no curative therapy is available (1). Systemic palliative methods, based on androgen ablation, are usually succesful, but of limited duration. The outgrowth of androgen insensitive cells is inevitable, and will eventually result in the patients death (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scott, W.W., Menon, M. and Walsh, P.C. Hormonal therapy of prostatic cancer. Cancer, 45:1929–1936, 1980.

    PubMed  CAS  Google Scholar 

  2. Lepor, H., Ross, A. and Walsh, P.C. The influence of hormonal therapy on survival of men with advanced prostatic cancer. J. Urol., 128:335–340, 1982.

    PubMed  CAS  Google Scholar 

  3. Muschel, R. and Liotta, L. Role of oncogenes in metastasis. Carcinogenesis 9:705–710, 1989.

    Article  Google Scholar 

  4. Yunis, Y. Chromosomal basis of neoplasia. Science, 221:227–236, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Hinds, Ph., Finlay, C. and Levine, A. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J. of Virology, 63:739–746, 1989.

    CAS  Google Scholar 

  6. Baker, S. J., Fearon, E. R., Nigro, J. M., Hamilton, S. R., Preisinger, A. C., Jessup, J. M., VanTuinen, P., Ledbetter, D. H., Barker, D. F., Nakamura, Y., White, R. and Vogelstein, B. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244:217–221, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Atkin, N.B. and Baker, M.C. Chromosome study of five cancers of the prostate. Human Genetics, 70:359–364, 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Britten, R.J., Graham, D.E. and Neufeld, B.R. Analysis of repeating sequences by reassociation. In: Methods in Enzymology, Vol. 29E; Grossman, L., Moldave, K. (Eds.) Acadamic Press, New York, pp. 363–406, 1974.

    Google Scholar 

  9. Sargent, T.D. Isolation of differentially expressed genes. In: Methods in Enzymology, Vol. 152; Berger, S.L., Kimmel, A.R. (Eds.) Academic Press, New York, pp. 423–432, 1987.

    Google Scholar 

  10. Feinberg, A. and Vogelstein, B. A technique for radiolabeling DNA restiction endonuclease fragments to high specific activity. Anal. Bioch., 132:6–13. 1982, 1983.

    Article  Google Scholar 

  11. Young, B.D. and Anderson, M.L.M. Quantitative analysis of solution hybridisation. In: Nucleic Acid Hybridisation; A Practical Approach. Hames, B.D., Higgins, S.J. (Eds) IRL Press, Oxford, pp. 47–71, 1985.

    Google Scholar 

  12. Travis, G.H. and Sutcliffe, J.G. Phenol emulsion enhanced driven subtractive cDNA cloning: isolation of low-abundance monkey cortex specific mRNAs. Proc. Natl. Acad. Sci. USA, 85:1696–1700, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Almendral, J.M., Sommer, D., MacDonald-Bravo, H., Burckhardt, J., Perera, J. and Bravo, R. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol., 8:2140–2148, 1988.

    PubMed  CAS  Google Scholar 

  14. Lau, L.F. and Nathans, D. Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J., 4:3145–3151, 1985.

    PubMed  CAS  Google Scholar 

  15. Lau, L.F. and Nathans, D. Expression of a set of growth related immediate early genes in Balb/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc. Natl. Acad. Sci. USA, 84:1182–1186, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Kartasova, T., Cornelissen, B.J.C., Belt, P. and Van de Putte, P. Effects of UV, 4-NQO and TPA on gene expression in cultured human epidermal keratinocytes. Nucleic Acid Res., 15:5945–5962, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Smits, H.L., Floyd, E.E. and Jetten, A.M. Molecular cloning of gene sequences regulated during squamous differentiation of tracheal epithelial cells and controlled by retinoic acid. Mol. Cell. Biol., 7:4017–4023, 1987.

    PubMed  CAS  Google Scholar 

  18. Augenlicht, L.H. and Kobrin, D. Cloning and screening of sequences expressed in a mouse colon tumor. Cancer Res., 42:1088–1093, 1982.

    PubMed  CAS  Google Scholar 

  19. Yamamoto, M., Maehara, Y., Takahashi, K. and Endo, H. Cloning of sequences expressed specifically in tumors of rat. Proc. Natl. Acad. Sci. USA, 80:7524–7527, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Matrisian, L.M., Bowden, G.T., Kriegg, P., Furstenberger, G., Briand, J.-P., Leroy, P. and Breatnach, R. The mRNA coding for the secreted protease transin is expressed more abundantly in malignant than benign tumors. Proc. Natl. Acad. Sci. USA, 83:9413–9417, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Schalken, J.A., Ebeling, S.B., Isaacs, J.T., Treiger, B, Bussemakers, M.J.G., De Jong, M.E.M., Van de Ven, W.J.M. Down modulation of fibronectin mRNA in metastasizing rat prostatic cancer cells revealed by differential hybridization analysis. Cancer Res., 48:2042–2046, 1988.

    PubMed  CAS  Google Scholar 

  22. Steeg, P.S., Bevilacqua, G.B., Kopper, L., Thorgeirsson, U.P., Talmadge, J.E., Liotta, L. and Sobel, M.E. Evidence for a novel gene associated with low tumor metastatic potential. J. Nat!. Cancer Inst., 80:200–204, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Dear, T.N., Ramshaw, I.A. and Kefford, R.F. Differential expression of a novel gene, WDNM1, in nonmetastatic rat mammary adenocarcinoma cells. Cancer Res., 48:5203–5209, 1988.

    PubMed  CAS  Google Scholar 

  24. Dunning, W.F. Prostate cancer in the rat. Monographs of the National Cancer Institute, 12:351–369, 1963.

    CAS  Google Scholar 

  25. Isaacs, J.T. Development and characterization of available animal model systems for the study of prostatic cancer. In: Current concepts and approaches to the study of prostatic cancer. D.S. Coffey, M. Bruchovsky, W.H. Gardner, M.I. Resnick, and J.P. Kan, (Eds.) Alan R. Liss, New York, pp. 513–576, 1987.

    Google Scholar 

  26. Minagawe, H., Miyauchi, T., Wakisaka, M., Susi, H., Matsuzaki, O. and Shimazaki, J. Properties of two sublines derived from rat prostatic adenocarcinoma (Dunning R-3327 tumor) GANN, 74:524–533, 1983.

    Google Scholar 

  27. Isaacs, J.T., Yu, G. and Coffey, D.S. The characterization of a newly identified, highly metastatic variant of the Dunning R-3327 rat prostatic adenocarcinoma system. The MAT-LyLu tumor. Invest. Urol., 19:20–23, 1981.

    CAS  Google Scholar 

  28. Lazan, D., Heston, W.D., Kadman, D. and Fair, W. Inhibition of the R-3327 MAT-Lu prostatic tumor by diethylstilbestrol and 1,2-bis(3,5-dioxopiperazin-1-yl)propane. Cancer Res., 42:1390–1394, 1982.

    PubMed  CAS  Google Scholar 

  29. Treiger, B. and Isaacs, J.T. Expression of a transfected v-Ha-ras oncogene in a Dunning rat prostatic adenocarcinoma and the development of high metastatic ability. J. of Urol., 140:1580–1583, 1988.

    CAS  Google Scholar 

  30. Chen, L.B., Gallimore, P.H. and McDougall, J.K. Correlation between tumor induction and the large external tansformation-sensitive protein on the cell surface. Proc. Natl. Acad. Sci. USA, 73:3570–3574, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, L.B., Summerhayes, I., Hsieh, P. and Gallimore, P.H. Possible role of fibronectin in malignancy. J. Supramol Struc., 12:139–150, 1979.

    Article  CAS  Google Scholar 

  32. Raz, A., Zoller, M. and Ben-ze’ev, A. Cell configuration and adhesive properties of metastasizing and non-metastasizing BSp73 rat adenocarcinoma cells. Exp. Cell. Res., 162:127–141, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Raz, A. and Geiger, B. Altered organization of cell-substrate contacts and membrane associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res., 42:5183–5190, 1982.

    PubMed  CAS  Google Scholar 

  34. Volk, T., Geiger, B. and Raz, A. Motility and adhesive properties of high-and low-metastatic murine neoplastic cells. Cancer Res., 44:811–824, 1984.

    PubMed  CAS  Google Scholar 

  35. Schwarzbauer, J.E., Tamkun, J.W., Lemischka, I.R. and Hynes, R. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell, 35:421–431, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Zardi, L., Camemolla, B., Siri, A., Petersen, T.E., Paolella, G., Sebastio, G. and Baralle, F.E. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J., 6:2337–2342, 1987.

    PubMed  CAS  Google Scholar 

  37. Rocco, M., Infusini, E., Daga, M.G., Gogioso, L. and Cuniberti C. Models of fibronectin. EMBO J., 6:2343–2349, 1987.

    PubMed  CAS  Google Scholar 

  38. Bussemakers, M.J.G., Debruijne, F.M.J., Van de Ven, W.J.M. and Schalken, J.A. Identification of genes overexpressed in metastatic rat prostatic tumors. Submitted for publication, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schalken, J.A., Bussemakers, M.J.G. (1991). Differential Hybridization Analysis as a Tool to Study Prostatic Cancer Metastasis. In: Karr, J.P., Coffey, D.S., Smith, R.G., Tindall, D.J. (eds) Molecular and Cellular Biology of Prostate Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3704-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3704-5_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6647-8

  • Online ISBN: 978-1-4615-3704-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics