Skip to main content

Tissue Specificity and Cell Death are Associated with Specific Alterations in Nuclear Matrix Proteins

  • Chapter
Molecular and Cellular Biology of Prostate Cancer

Abstract

The ability of identical signals to interact with specific tissues in the same animal and result in the expression of different genes, is a fundamental question in cell regulation. A suitable model system for investigating the tissue specific regulation of gene expression is found in comparing the dihydrotestosteone (DHT) response in ventral prostate with the seminal vesicle. The rat ventral prostate and the seminal vesicle both contain the same genome, posses nuclear DHT receptors, and respond to DHT with the production of markedly different secretory products (figure 1). Upon DHT stimulation, the ventral prostate produces several specific secretory proteins. Similarly, the seminal vesicle produces its own unique tissue specific secretory proteins (figure 2). These tissue specific secretory proteins are all under control of the androgen receptor. Evidently there is another formes) of regulation which determines what genes are activated when the cells are stimulated with androgen. We hypothesize that this regulation is brought about by alterations in the three dimensional conformation of the genome within the nucleus. It is believed that the genomic configuration within the nucleus is determined in part by the binding of DNA loop domains to the nuclear matrix proteins. If the ventral prostate and seminal vesicle each possess unique conformations of their DNA, it is possible that the androgen receptor is able to bind and activate tissue specific transcription on different locations of the DNA depending on the tissue. Since the nuclear matrix is the organizing structure of the DNA in the nucleus, tissue specificity in three dimensional DNA organization may be caused by a unique nuclear matrix composition. We propose that the nuclear matrix is tissue specific and is involved in the regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R.B., Greene, G.L., and Barrack, E.R. Estrogen receptors in the nuclear matrix: direct demonstration using monoclonal antireceptor antibody. Endocrinology 120(5):1851–1857, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Allen, S.L., Berezney, R., and Coffey, D.S. Phosphorylation of nuclear matrix proteins in isolated regenerating rat liver nuclei. BBRC 75:111–116, 1977.

    PubMed  CAS  Google Scholar 

  3. Barrack, E.R. and Coffey, D.S. The specific binding of estrogens and androgens to the nuclear matrix of sex hormone responsive tissues. J. Biol. Chem. 255:7265–7275, 1980.

    PubMed  CAS  Google Scholar 

  4. Berezney, R. and Coffey, D.S. Identification of a nuclear protein matrix. Biochem. Biophys. Res. Comm. 60:1410–1417, 1974.

    Article  PubMed  CAS  Google Scholar 

  5. Bladon, T., Brasch, K., Brown, D.L., and Setterfield, G. Changes in structure and protein composition of bovine lymphocyte nuclear matrix during concanavalin-A-induced mitogenesis. Biochem. Cell Biol. 66:40–53, 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Buttyan, R. and Olsson, C.A. Prediction of transcriptional activity based on gene association with the nuclear matrix. BBRC 138(3):1334–1340, 1986.

    PubMed  CAS  Google Scholar 

  7. Carmo-Fornesca, M. Androgen-dependent nuclear proteins in rat ventral prostate are glycoproteins associated with the nuclear matrix. Cell Biology International Reports 12(8):607–620, 1988.

    Article  Google Scholar 

  8. Chung, L. W. K, and Coffey, D.S. Biochemical characterization of prostatic nuclei: I. Androgeninduced changes in nuclear proteins. Biochimica. et. Biophysica. Acta. 247:570–583, 1971.

    Article  PubMed  CAS  Google Scholar 

  9. Ciejek, E.M., Tsai, M.J., O’Malley, B.W. Actively ttranscribed genes are associated with the 41. van Eekelen, C.A. and van Venrooij, W.J. hnRNA and its attachment to a nuclear protein Matrix. J. Cell Biol. 88:554–563, 1981. Nuclear Matrix. Nature 306:607-9, 1983.

    Article  Google Scholar 

  10. Covey, L., Choi, Y., and Prives, C. Association of Simian virus 40 T antigen with the nuclear matrix in transformed and revertant mouse cells. Mol. Cell Biol. 4:1385–1392, 1984.

    Google Scholar 

  11. Donnelly, B.J., Lakey, W.H., and McBlain, W.H. Androgen binding sites on nuclear matrix of normal and hyperplastic human prostate. J. Urol. 131:806–811, 1984.

    PubMed  CAS  Google Scholar 

  12. Eisenman, R.N., Tachibana, C.Y., Abrams, H.D., and Hann, S.R. V-myc and c-myc encoded proteins are associated with the nuclear matrix. Mol. Cell Biol. 5:114–26, 1985.

    PubMed  CAS  Google Scholar 

  13. Epperly, M., Donofrio, J., Barham, S.S., and Veneziale, C.M. Nuclear protein matrix of seminal vesicle epithelium. J. Steroid Biochem. 20(3):691–697, 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Fey, E.G., Ornelles, D.A., and Penman, S. Association of RNA with the cytoskeleton and the nuclear matrix. J. Cell Sci. Suppl. 5:99–119, 1986.

    PubMed  CAS  Google Scholar 

  15. Fey, E. G. and Penman, S. Nuclear matrix proteins reflect cell type of origin in cultured human cells. PNAS 85:121–125, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Fey, E.G., Wan, K.M., and Penman, S. Epithelial cytoskeletal framework and nuclear matrixintermediate filament scaffold: Three-dimensional organization and protein composition. J. Cell Biol. 98:1973–1984, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Goueli, S.A. and Ahmed, K. Phosphorylation of prostatic nuclear matrix proteins is under androgenic control. Arch. Biochem. Biophys. 234(2):646–650, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Henry, S.M. and Hodge, L.D. Nuclear Matrix: A cell-cycle-dependent site of increased intranuclear protein phosphorylation. Eur. J. Biochem. 133(1):23–29, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Kandala, J.C., Kistler, W.S., and Kistler, M.K. Methylation of the rat seminal vesicle secretory protein IV gene. JBC 260(29):15959–15964, 1985.

    CAS  Google Scholar 

  20. Kishimoto, R., Gomi, T., Izaike, Y., Hagai, K., and Nakagawa, H. A novel nuclear protein in rat ventral prostate androgen-dependent and age-related change. Biochimica. et. Biophysica. Acta. 718:165–171, 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Lea, O. A., Petrusz, P., and French, F.S. Prostatein: A major secretory protein of the rat ventral prostate. JBC 254(13):6196–6202, 1979.

    CAS  Google Scholar 

  22. Long, B.H. and Schrier, W.H. Isolation from friend erythroleukemia cells of an RNase-sensitive nuclear matrix fibril fraction containing hnRNA and snRNA. Biol. Cell 48:99–108, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Miller, T.E., Huang, C.Y., and Pogo, A.O. Rat liver nuclear skeleton and ribonucleoprotein complexes containing hnRNA. J. Cell Biol. 76:675–691, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Mirkovitch, J., Mirault, M-E., Laemmli, U.K Organization of the higher order chromatin loop: Specific DNA attachment sites on nuclear scaffold. Cell 39:223–232, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Mowszowicz, I., Doukani, A., and Giacomini, M. Binding of the androgen receptor to the nuclear matrix of human foreskin. J. Steroid Biochem. 29:715–719, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Moy, B.C. and Tew, K.D. Differences in the nuclear matrix phosphoproteins of a wild-type and nitrogen mustard-resistant rat breast carcinoma Cell Line. Cancer Res. 46(9):4672–4676,1986.

    PubMed  CAS  Google Scholar 

  27. O’Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021, 1975.

    PubMed  Google Scholar 

  28. Ostrowski, M.C., Kistler, M.K, and Kistler, W. S. Purification and cell-free synthesis of a major protein from rat seminal vesicle secretion. JBC 254(2):383–390, 1979.

    CAS  Google Scholar 

  29. Pardoll, D.M. Vogelstein, V., and Coffey, D.S. A fixed site of DNA replication in eukaryotic cells. Cell 19:527–36, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Peters, K.E. and Commings, D.E. Two dimensional gel electrophoresis of rat liver nuclear washes, nuclear matrix, and hnRNA proteins. J. Cell Biol. 86:135–155, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Pienta, K.J., Partin, A.W., and Coffey, D.S. Cancer as a disease of DNA organization and dynamic cell structure. Can. Res. 49:2525–2532, 1989.

    CAS  Google Scholar 

  32. Robinson S.I., Nelkin, B.D., Vogelstein, B. The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells. Cell 28:99–106, 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Robinson, S.I., Small, D., Idzerda, R., McKnight, G.S., and Vogelstein, B. The association of transcriptionally active genes with the nuclear matrix of the chicken oviduct. Nucleic Acids Res. 11:5113–30, 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Sarnow, P., Hearing, O., Anderson, C., Reich, N., and Levine, A.J. Identification and characterization of an immunologically conserved adenovirus early region 11,000 Mr Protein and its association with the nuclear matrix. J. Mol. Biol. 162:565–83, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Sevaljevic, L., Brajanovic, N., and Trajkovic, D. Cortisol-induced stimulation of nuclear matrix protein phosphorylation. Mol. Biol. Rep. 8(4):225–232, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Small, D., Nelkin, B., and Vogelstein, B. Nucleic Acids Res. 13:2413, 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Small, D. and Vogelstein, B. The anatomy of supercoiled loops in the drosophila 7F locus. Nucleic Acids Res. 21:7703–7713, 1985.

    Article  Google Scholar 

  38. Staufenbiel, M. and Deppert, W. Different structural systems of the nucleus are targets for SV40 large T antigen. Cell 33:173–181, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Stuurman, N., Van Driel, R., De Jong, L., Meijne, A.M.L., and Van Renswoude, J. The protein composition of the nuclear matrix of Murine P19 embryonal carcinoma cells is differentiationstage dependent. Exp. Cell Res. 180:46–466, 1989.

    Article  Google Scholar 

  40. Teraoka, H., Ohmura, Y., and Tsukada, K. The nuclear matrix from rat liver is capable of phosphorylating exogenous tyrosine-containing substrates. Biochem.Int. 18(6):1203–1210, 1989.

    PubMed  CAS  Google Scholar 

  41. van Eekelen, C.A. and van Venrooij, W.J. hnRNA and its attachment to a nuclear protein matrix. J. Cell Biol. 88:554–563, 1981.

    Article  PubMed  Google Scholar 

  42. Venkatraman, J.Y., Howell, G.M., and Lefebvre, Y.A. Androgen-dependent peptides of the rat ventral prostate nuclear envelope. BBRC 125(2):469–474, 1984.

    PubMed  CAS  Google Scholar 

  43. Viskochil, D.H., Perry, S.T., Lea, O.A., Stafford, D.W., Wilson, E.M., and French, F.S. Isolation of two genomic sequences encoding the Mr=14,000 subunit of rat prostatein. JBC 258(14):8861–8866, 1983.

    CAS  Google Scholar 

  44. Vogelstein, B., Pardoll, D.M., and Coffey, D.S. Supercoiled loops and eukaryotic DNA replication. Cell 22:79–85, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Wagner, C.L. and Kistler W.S. Analysis of the major large polypeptides of rat seminal vesicle secretion: SVS I,II, and III. Biol. Reprod. 36:501–510,1987.

    Article  PubMed  CAS  Google Scholar 

  46. White, R. & Parker, M. Developmental changes in DNA methylation around prostatic steroidbinding protein genes. JBC 258(14):8943–8, 1983.

    CAS  Google Scholar 

  47. Zehnbauer, B.A. and Vogelstein, B. BioEssays 2:52–54,1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Getzenberg, R.H., Coffey, D.S. (1991). Tissue Specificity and Cell Death are Associated with Specific Alterations in Nuclear Matrix Proteins. In: Karr, J.P., Coffey, D.S., Smith, R.G., Tindall, D.J. (eds) Molecular and Cellular Biology of Prostate Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3704-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3704-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6647-8

  • Online ISBN: 978-1-4615-3704-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics