Skip to main content

Molecular Defects in Human Antithrombin III Deficiency

  • Chapter
Recombinant Technology in Hemostasis and Thrombosis

Abstract

The presence, and unopposed action, of activated coagulation factors in the circulation would result in clot or thrombus formation within intact blood vessels, with potentially life-threatening consequences. Such events are prevented, in the non-pathological state, by the presence in plasma of circulating inhibitors of coagulation. The most abundant of these is a plasma glycoprotein known for historical reasons as antithrombin III (AT-III).1, 2 Genetic disorders that reduce functional activity of AT-III leave individuals at risk for thromboembolism. The majority of those affected suffer at least one such episode by their fifth decade, with the proportion of AT-III-deficient patients clinically affected rising by roughly 1% per year of life.3–6 In this article we summarize recent progress in defining the molecular defects involved in hereditary antithrombin III deficiency, in the context of the normal structure and function of this important serine protease inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abilgaard U: Purification of two progressive antithrombins of human plasma. Scand J Clin Lab Invest 19: 190–195, 1967

    Article  CAS  Google Scholar 

  2. Rosenberg RD, Damus PS: The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 248: 6490–6505, 1973

    PubMed  CAS  Google Scholar 

  3. Thaler E, Lechner K: Antithrombin III deficiency and thromboembolism. Clin Haematol 10: 369–390, 1981

    PubMed  CAS  Google Scholar 

  4. Bick RL: Clinical relevance of antithrombin III. Sem Thromb Hemost 8: 276–287, 1982

    Article  CAS  Google Scholar 

  5. Roka L, Eckhardt T: Antithrombin III: Properties and function, in Seegers WH, Walz DA (eds): Prothrombin and Other Vitamin K Proteins. Vol. 2. Boca Raton, FL CRC, 1986 pp 1–15

    Google Scholar 

  6. Beresford CH: Antithrombin III deficiency. Blood Rev 2: 239–250, 1988

    Article  PubMed  CAS  Google Scholar 

  7. Bock SC, Wion KL, Vehar GA, et al: Cloning and expression of the cDNA for human antithrombin III. Nucleic Acids Res 10: 8113–8125, 1982

    Article  PubMed  CAS  Google Scholar 

  8. Sun X-J, Chang J-Y: Heparin binding domain of human antithrombin III inferred from the sequential reduction of its three disulfide linkages. J Biol Chem 264: 11288–11293, 1989

    PubMed  CAS  Google Scholar 

  9. Rosenfeld L, Danishefsky I: Effects of enzymatic doglycosylation on the biological activities of human thrombin and antithrombin. Arch Biochem Biophys 229: 359–367, 1984

    Article  PubMed  CAS  Google Scholar 

  10. Hedner U, Nilsson IM: Antithrombin III in a clinical material. Thromb Res 3: 631–641, 1973

    Article  CAS  Google Scholar 

  11. Lee AKY, Chan V, Chan TK: The identification in and localization of antithrombin III in human tissues. Thromb Res 14: 209–217, 1979

    Article  PubMed  CAS  Google Scholar 

  12. D’Souza SE, Mercer JFB: Antithrombin III mRNA in adult liver and kidney and in rat liver during development. Biochem Biophys Res Comm 142: 417–421, 1987

    Article  PubMed  Google Scholar 

  13. Brennan SO, George PM, Jordan RE: Physiological variant of antithrombin III lacks carbohydrate side chain at Asn 135. FEBS Lett 219: 431–436, 1987

    Article  PubMed  CAS  Google Scholar 

  14. Rosenberg RD: Role of heparin and heparin-like molecules in thrombosis and atherosclerosis. Fed Proc 44: 404–409, 1985

    PubMed  CAS  Google Scholar 

  15. Hatton MW, Moar SL, Richardson M: Evidence that rabbit [125]I-antithrombin binds to proteoheparin sulphate at the subendothelium of the rabbit aorta in vitro. Blood Vessels 25: 12–27, 1988

    PubMed  CAS  Google Scholar 

  16. Stern D, Nawroth P, Marcum J, et al: Interaction of antithrombin III with bovine aortic segments. Role of heparin in binding and enhanced anticoagulant activity. J Clin Invest 75: 272–279, 1985

    Article  PubMed  CAS  Google Scholar 

  17. Marcum JA, McKenney JB, Rosenberg RD: Acceleration of thrombinantithrombin complex formation in rat hindquarters via heparin-like molecules bound to the endothelium. J Clin Invest 74: 341–350, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Chang J-Y: Binding of heparin to human antithrombin III activities selective chemical modification at Lys 236. J Biol Chem 264: 3111–3115, 1989

    PubMed  CAS  Google Scholar 

  19. Olson ST, Shore JD: Binding of high affinity heparin to antithrombin III. J Biol Chem 256: 11065–11072, 1982

    Google Scholar 

  20. Blackburn MN, Smith RL, Carson J, et al: The heparin-binding site of antithrombin III. Identification of a critical tryptophan in the amino acid sequence. J Biol Chem 259: 939–941, 1984

    PubMed  CAS  Google Scholar 

  21. Smith JW, Knauer DJ: A heparin binding site in antithrombin III. J Biol Chem 262: 11964–11972, 1987

    PubMed  CAS  Google Scholar 

  22. Fenton JW II, Witting JI, Pouliott C, et al: Thrombin anion-binding exosite interactions with heparin and various polyanions. Ann NY Acad Sci 556: 158–165, 1989

    Article  PubMed  CAS  Google Scholar 

  23. Saito S, Takahashi K, Sakuragawa N: Interaction of abnormal antithrombin-III Toyama with cultured porcine aortic endothelial cells. Thromb Res 50: 19–25, 1988

    Article  PubMed  CAS  Google Scholar 

  24. Fish WW, Bjork I: Release of a two-chain form of antithrombin from the antithrombin-thrombin complex. Eur J Biochem 101: 31–38, 1979

    Article  PubMed  CAS  Google Scholar 

  25. Bjork I, Jackson CM, Jornvall H, et al: The active site of antithrombin. J Biol Chem 257: 2406–2411, 1982

    PubMed  CAS  Google Scholar 

  26. Owen WG: Evidence for the formation of an ester between thrombin and heparin cofactor. Biophys Acta 405: 380–387, 1975

    Article  CAS  Google Scholar 

  27. Pizzo SV: Serpin Receptor 1: A hepatic receptor that mediates the clearance of antithrombin III protease complexes. Am J Med 87(Suppl. 3B): 10S–14S, 1989

    Article  PubMed  CAS  Google Scholar 

  28. Kurachi K, Fujikawa K, Schmer G, et al: Inhibition of bovine factor IXa and factor Xaß by antithrombin III. Biochemistry 15: 373–377, 1976

    Article  PubMed  CAS  Google Scholar 

  29. Biggs R, Denson KWE, Akman N, et al: Antithrombin III, antifactor Xa and heparin. Br J Haematol 19: 283–305, 1970

    Article  PubMed  CAS  Google Scholar 

  30. Scott CF, Colman RW: Factors influencing the acceleration of human factor Xa inactivation by antithrombin III. Blood 73: 1873–1879, 1989

    PubMed  CAS  Google Scholar 

  31. Stead N, Kaplan AP, Rosenberg RD: Inhibition of activated Factor XII by antithrombin-heparin cofactor. J Biol Chem 251: 6481–6488, 1976

    PubMed  CAS  Google Scholar 

  32. Lahiri B, Rosenberg R, Talamo RC, et al: Antithrombin III: An inhibitor of human plasma kallikrein. Fed Proc 33: 642, 1974 (Abstr)

    Google Scholar 

  33. Highsmith RF, Rosenberg RD: The inhibition of human plasmin by human antithrombin-heparin cofactor. J Biol Chem 249: 4335–4338, 1974

    PubMed  CAS  Google Scholar 

  34. Clemmensen I: Inhibition or urokinase by complex formation with human antithrombin III in the absence and presence of heparin. Thromb Haemost 39: 616–623, 1978

    PubMed  CAS  Google Scholar 

  35. Abildgaard U, Egeberg O: Thrombin inhibitory activity of fractions obtained by gel filtration of antithrombin III deficient plasma. Scand J Haemat 5: 155–157, 1968

    Article  PubMed  CAS  Google Scholar 

  36. Buchanan MR, Boneu B, Ofosu F, et al: The relative importance of thrombin inhibition and factor Xa inhibition to the antithrombotic effects of heparin. Blood 65: 198–201, 1985

    PubMed  CAS  Google Scholar 

  37. Austin R, Rachubinski R, Fernandez-Rachubinski F, et al: Expression of biologically active antithrombin III in a cell-free system to define its thrombin-binding domain. Blood 72(Suppl 1): 362a, 1988 (abstr)

    Google Scholar 

  38. Austin RC, Rachubinski R, Fernandez-Rachubinski F, et al: Expression in a cell-free system of normal and variant forms of human antithrombin III: Ability to bind heparin and react with α-thrombin. (Blood in press)

    Google Scholar 

  39. Hultin MB, McKay J, Abildgaard U: Antithrombin Oslo: Type 1b classification of the first report antithrombin deficient family, with a review of hereditary antithrombin variants. Thrombos Haemost 59: 468–473, 1988

    CAS  Google Scholar 

  40. Hunt LT, Dayhoff MO: A surprising new protein superfamily containing ovalbumin, antithrombin-III, and alpha 1-protease inhibitor. Biochem Biophys Res Commun 95: 864–871, 1980

    Article  PubMed  CAS  Google Scholar 

  41. Carrell RW, Owen MC: Plakalbumin, α-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317: 730–732, 1985

    Article  PubMed  CAS  Google Scholar 

  42. Loeberman H, Tokuoka R, Deisenhofer J, et al: Human α-1-proteinase inhibitor crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol 177: 531–556, 1984

    Article  Google Scholar 

  43. Samama J, Delarue M, Muvrey L, et al: Crystallization and preliminary crystallographic data for bovine antithrombin-III. J Mol Biol 210: 877–879, 1989

    Article  PubMed  CAS  Google Scholar 

  44. Owen MC, Brennan SO, Lewis JH, et al: Mutation of antitrypsin to antithrombin. Alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg) a fatal bleeding disorder. N Engl J Med 390: 694–698, 1983

    Article  Google Scholar 

  45. Prochownik EV, Orkin SH: In vivo transcription of a human antithrombin III “minigene”. J Biol Chem 259: 15386–15392, 1984

    PubMed  CAS  Google Scholar 

  46. Bock SC, Marrinan JA, Radziejewska E: Antithrombin III Utah: Proline-407 to leucine mutation in a high conserved region near the inhibitor reactive site. Biochem 27: 6171–6178, 1988

    Article  CAS  Google Scholar 

  47. Prochownik EV, Bock SC, Orkin SH: Intron structure of the human antithrombin III gene differs from that of other members of the serine protease inhibitor superfamily. J Biol Chem 260: 9608–9612, 1985

    PubMed  CAS  Google Scholar 

  48. Prochownik EV, Markham AF, Orkin SH: Isolation of a cDNA clone for human antithrombin III. J Biol Chem 258: 8389–8394, 1983

    PubMed  CAS  Google Scholar 

  49. Bock SC, Levitan DJ: Characterization of an unusual DNA length polymorphism 5′ to the human antithrombin III gene. Nucleic Acids Res 11: 8569–8582, 1983

    Article  PubMed  CAS  Google Scholar 

  50. Bock SC, Harris JF, Schwartz CE, et al: Hereditary thrombosis in a Utah kindred is caused by a dysfunctional antithrombin III gene. Am J Hum Genet 37: 32–41, 1985

    PubMed  CAS  Google Scholar 

  51. Le Paslier D, Rochu D, Lucotte G: Pst polymorphism of the antithrombin III gene in a French population. Vox Sang 49: 168–170, 1985

    Article  PubMed  Google Scholar 

  52. Prochownik EV, Antonarakis S, Bauer KA, et al: Molecular heterogeneity of inherited antithrombn III deficiency. N Engl J Med 308: 1549–1552, 1983

    Article  PubMed  CAS  Google Scholar 

  53. Prochownik EV: Relationship between an enhancer element in the human antithrombin III gene and an immunoglobulin light-chain gene enhancer. Nature 316: 845–848, 1985

    Article  PubMed  CAS  Google Scholar 

  54. Ochoa A, Brunei F, Mendelzon D, et al: Different liver nuclear proteins bind to similar DNA sequences in the 5′-flanking regions of three hepatic genes. Nucleic Acids Res 17: 116–133, 1989

    Article  Google Scholar 

  55. Lovrien EW, Magenis Re, Rivas ML, et al: Linkage study of antithrombin III. Cytogenet Cell Genet 22: 319–323, 1978

    Article  PubMed  CAS  Google Scholar 

  56. Bock SC, Harris FJ, Balazx I, et al: Assignment of human antithrombin III structural gene to chromosome lq23-25. Cytogenet Cell Genet 39: 67–69, 1985

    Article  PubMed  CAS  Google Scholar 

  57. Winter JH, Bennett B, Watt JL, et al: Confirmation of linkage between antithrombin III and Duffy blood group and assignment of AT3 to Iq22 → q25. Ann Hum Genet 46: 29–34, 1982

    Article  PubMed  CAS  Google Scholar 

  58. Sas G, Peto I, Banhegyi D, et al: Heterogeneity of the ‘classical’ antithrombin III deficiency. Thromb Haemost 43: 133–136, 1980

    PubMed  CAS  Google Scholar 

  59. Bock SC, Prochownik EV: Molecular genetic survey of sixteen kindreds with hereditary antithrombin III deficiency. Blood 70: 1273–1278, 1987

    PubMed  CAS  Google Scholar 

  60. Fernandez-Rachubinski F, Blajchman MA: Unpublished observations.

    Google Scholar 

  61. Sacks SH, Mold J, Reader ST, et al: Evidence linking familial thrombosis with a defective antithrombin III gene in two British kindreds. J Med Genet 25: 20–24, 1988

    Article  PubMed  CAS  Google Scholar 

  62. Fernandez F, Rachubinski R, Brill-Edwards P, et al: Evidence for a partial deletion of the antithrombin III gene in a family with recurrent thrombosis and type 1 antithrombin III deficiency. Proc 4th Int Cong of Cell Biol, Montreal, Quebec, 1988, p 424 (abstr)

    Google Scholar 

  63. Devraj-Kizuk R, Chui DHK, Prochownik EV, et al: Antithrombon-III-Hamilton: A gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood 72: 1518–1523, 1988

    PubMed  CAS  Google Scholar 

  64. Fernandez-Rachubinski F, Eng B, Murray WW, et al: Incorporation of 7-deaza-2′ dGTP during amplification by the polymerase chain reaction improves subsequent direct sequencing. Sequence — J DNA Mapping and Sequencing (in press)

    Google Scholar 

  65. Pewarchuk W, Fernandez-Rachubinski F, Blajchman MA: Manuscript in preparation.

    Google Scholar 

  66. Saiki RJ, Scarf S, Faloma F, et al: Enzymatic amplification of ß-globin genomic sequences and restriction site analysis for detection of sickle cell anemia. Science 230: 1350–1354, 1985

    Article  PubMed  CAS  Google Scholar 

  67. Thein SL, Lane DA: Use of synthetic oligonucleotides in the characterization of antithrombin III Northwick Park (393 CGT→TGT) and antithrombin III Glasgow (393CGT→CAT). Blood 72: 1817–1821, 1988

    PubMed  CAS  Google Scholar 

  68. Lane DA, Erdjument A, Glynn V, et al: Antithrombin Sheffield: Amino acid substitution at the reactive site (Arg393 to His) causing thrombosis. Br J Haematol 71: 91–96, 1989

    Article  PubMed  CAS  Google Scholar 

  69. Erdjument H, Lane DA, Ireland H, et al: Antithrombin III Milano. Single amino acid substitution at the reactive site, Arg393 to Cys. Thromb Haemost 60: 471–475, 1988

    PubMed  CAS  Google Scholar 

  70. Erdjument H, Lane DA, Ireland H, et al: Formation of a covalent disulfide-linked antithrombin-albumin complex by an antithrombin variant, antithrombin “Northwick Park”. J Biol Chem 262: 13381–13384, 1987

    PubMed  CAS  Google Scholar 

  71. Sas G, Pepper DS, Cash JD: Further investigations on antithrombin III in the plasmas of patients with the abnormality of antithrombin III Budapest. Thromb Diath Haemorrh 33: 564–572, 1975

    PubMed  CAS  Google Scholar 

  72. Murayama H, Matsuda M: Abnormal antithrombin III with defective biological and immunological functions found in a thrombophilic patient “Antithrombin III Tokyo”. Thromb Haemost 50: 358, 1983 (abstr)

    Google Scholar 

  73. Murayama H, Matsuda M: Abnormal properties and behaviors of antithrombin III found in a thrombophilic patient: Defective biological functions and dissimilar antigenic determinants. Thromb Haemost 56: 165–171, 1986

    PubMed  CAS  Google Scholar 

  74. Uratani Y, Murayama H, Matsuda M, et al: Conformation of antithrombin III with defective biological functions derived from a thrombophilic patient. Thromb Res 49: 591–600, 1988

    Article  PubMed  CAS  Google Scholar 

  75. Tengborn L, Frohm B, Nilsson LE, et al: A Swedish family with abnormal antithrombin III. Scand J Haematol 34: 412–416, 1985

    Article  PubMed  CAS  Google Scholar 

  76. Egeberg O: Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh 13: 516–530, 1965

    PubMed  CAS  Google Scholar 

  77. Bock SC, Silbermann JA, Wikoff W, et al: Identification of a threonine for alanine substitution at residue 404 of antithrombin III Oslo suggests integrity of the 404-407 region is important for maintaining normal plasma inhibitor levels. Thromb Haemostas 62: 494 (abstr)

    Google Scholar 

  78. Brunei F, Buchange N, Fischer AM, et al: Antithrombin III Alger: A new case of Arg 47→Cys mutation. Am J Hematol 25: 223–224, 1987

    Article  Google Scholar 

  79. Finazzi G, Caccia R, Barbui T: Different prevalence of thromboembolism in the subtypes of congenital antithrombin III deficiency: Review of 404 cases. Thromb Haemost 58: 1094, 1987 (letter)

    PubMed  CAS  Google Scholar 

  80. Brennan SO, Borg J-Y, George PM, et al: New carbohydrate site in mutant antithrombin (7 Ile→Asn) with decreased heparin affinity. FEBS Lett 237: 118–122, 1988

    Article  PubMed  CAS  Google Scholar 

  81. Hakten M, Deniz U, Ozbay G, et al: Two cases of homozygous antithrombin III deficiency in a family with congenital deficiency of AT-III. In Senzinger H and Vinazzer H (eds) Thrombosis and Haemorrhagic Disorders. Proc of the 6th International Meeting of the Danubian League Against Thrombosis and Haemorrhagic Disorders. Schmitt and Meyer GmbH, Wurzburg, Germany, 1989, pp 177–181

    Google Scholar 

  82. Peters M, Jansen E, Ten Cate JW, et al: Neonatal antithrombin III. Brit J Haemat 58: 579–587, 1984

    Article  PubMed  CAS  Google Scholar 

  83. Ruthnum P, et al: Atypical malformations in an infant exposed to warfarin during first trimester of pregnancy. Teratology 36: 299–301, 1987

    Article  PubMed  CAS  Google Scholar 

  84. Howell R, Fidler J, Letsky E, et al: The risks of antenatal subcutaneous heparin prophylaxis: A controlled trial. Br J Obstet Gynaecol 90: 1124–1128, 1983

    Article  PubMed  CAS  Google Scholar 

  85. Warkentin TE, Kelton JG: Heparin-induced thrombocytopenia. Ann Rev Med 40: 31–44, 1989

    Article  PubMed  CAS  Google Scholar 

  86. Rosenberg RD: Actions and interactions of antithrombin and heparin: N Engl J Med 292: 146–152, 1975

    Article  PubMed  CAS  Google Scholar 

  87. Abildgaard V: Antithrombins and related inhibitors of coagulation, in Poller L (ed): Recent Advances in Blood Coagulation. Edinburgh, Scotland, Churchill Livingstone, 1981 pp 151–173

    Google Scholar 

  88. Menacho D, O’Malley JP, Schorr JB, et al: Evaluation of the safety, recovery, half-life and clinical efficacy of antithrombin III (human) in patients with hereditary antithrombin III deficiency. Blood 75: 33–39, 1990

    Google Scholar 

  89. Francis CW, Pellegrini VD, Marder VJ, et al: Antithrombin Ill/lowdose heparin in prevention of venous thrombosis following total hip arthroplasty. Circulation 78(Suppl II): 312, 1988

    Google Scholar 

  90. Schrader J, Kostering H, Kramer P, et al: Antithrombin-III-Substitution bei dialysepflichtiger Niereninsuffizienz. Dtsch med Wschr 107: 1847–1850, 1982

    Article  PubMed  CAS  Google Scholar 

  91. Wasley LC, Attra DH, Bauer KA, et al: Expression and characterization of human antithrombin III synthesized in mammalian cells. J Biol Chem 262: 14766–14772, 1987

    PubMed  CAS  Google Scholar 

  92. Stephens AW, Siddiqui A, Hirs CHW: Expression of functionally active human antithrombin III. Proc Natl Acad Sci USA 84: 3886–3890, 1987

    Article  PubMed  CAS  Google Scholar 

  93. Zettlemeissl G, Cenrodt HS, Nimtz M, et al: Characterization of recombinant human antithrombin III synthesized in Chinese Hamster Ovary Cells. J Biol Chem 264: 21153–21159, 1989

    Google Scholar 

  94. Broker M, Ragg H, Kargis HE: Expression of human antithrombin III in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biochim Biophys Acta 908: 203–213, 1987

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheffield, W.P., Fernandez-Rachubinski, F., Austin, R.C., Blajchman, M.A. (1991). Molecular Defects in Human Antithrombin III Deficiency. In: Hoyer, L.W., Drohan, W.N. (eds) Recombinant Technology in Hemostasis and Thrombosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3698-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3698-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6644-7

  • Online ISBN: 978-1-4615-3698-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics