Factor IX: Gene Structure and Protein Synthesis

  • D. B. C. Ritchie
  • D. L. Robertson
  • R. T. A. MacGillivray

Abstract

The development of recombinant DNA techniques during the past ten years has led to an explosion of the field of molecular genetics. Using these techniques, DNA fragments can be cloned and characterized at the molecular level. This in turn led to the discovery of intervening sequences in some eukaryotic genes, the identification of promoter elements, and to the production of recombinant proteins. As with many other fields, the field of thrombosis and hemostasis has also been changed by the application of recombinant DNA techniques. In this manuscript, we will review the structure and expression of the human factor IX gene, and discuss the various approaches to producing recombinant factor IX as a pharmaceutical. The molecular genetics of factor IX deficiency (hemophilia B) are discussed elsewhere in this book. The molecular biology and molecular genetics of blood coagulation have been reviewed recently1, 2.

Keywords

Estrogen Codon Carboxylate Serine Barium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacGillivray RTA, Cool DE, Fung MR, Guinto ER, Koschinsky ML, Van Oost BA: Structure of the genes encoding proteins involved in blood clotting. In Setlow JK (ed): Genetic Engineering. Principles and Methods, vol 10. New York, NY, Plenum, 1988, p 265.Google Scholar
  2. 2.
    Furie B, Furie BC: The molecular basis of blood coagulation. Cell 53: 505, 1988.PubMedCrossRefGoogle Scholar
  3. 3.
    Choo KH, Gould KG, Rees DJG, Brownlee GG: Molecular cloning of the gene for human anti-haemophilic factor IX. Nature 299: 178, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    Katayama K, Ericsson LH, Enfield DL, Walsh KA, Neurath H, Davie EW, Titani K: Comparison of amino acid sequence of bovine coagulation factor IX (Christmas Factor) with that of other vitamin K-dependent plasma proteins. Proc Natl Acad Sci USA 76: 4990, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Anson DS, Choo KH, Rees DJG, Gianelli F, Gould K, Huddieston JA, Brownlee GG: The gene structure of human anti-haemophilic factor IX. EMBO J 3: 1053, 1984.PubMedGoogle Scholar
  6. 6.
    Jaye M, de la Salle H, Schamber F, Balland A, Kohli V, Findeli A, Tolstoshev P, Lecocq JP: Isolation of a human anti-haemophilic factor IX cDNA using a unique 52-base synthetic oligonucleotide probe deduced from the amino acid sequence of bovine factor IX. Nucleic Acids Res 11: 2325, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Jagadeeswaran P, Lavelle DE, Kaul R, Mohandas T, Warren ST: Isolation and characterization of human factor IX cDNA: identification of TaqI polymorphism and regional assignment. Somatic Cell Mol Genet 10: 465, 1984.CrossRefGoogle Scholar
  8. 8.
    Kurachi K, Davie EW: Isolation and characterization of a cDNA coding for human factor IX. Proc Natl Acad Sci USA 79: 6461, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    McGraw RA, Davis LM, Noyes CM, Lundblad RL; Roberts HR, Graham JB, Stafford DW: Evidence for a prevalent dimorphism in the activation peptide of human coagulation factor IX. Proc Natl Acad Sci USA 82: 2847, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Salier J-P, Hirosawa S, Kurachi K: Functional characterization of the 5′-regulatory region of human factor IX gene. J Biol Chem 265: 7062, 1990.PubMedGoogle Scholar
  11. 11.
    Watson MEE: Compilation of published signal sequences. Nucleic Acids Res 12: 5145, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Blobel G, Walter P, Chang CN, Goldman BM, Erickson, AH, Lingappa R: Translocation of proteins across membranes: the signal hypothesis and beyond. In Hopkin CR, Duncan CJ (Eds) Secretory Mechanisms, vol 33. London, Cambridge Univ Press, 1979, p 9.Google Scholar
  13. 13.
    Bentley AK, Rees DJG, Rizza C, Brownlee GG: Defective propeptide processing of blood clotting factor IX caused by mutation of arginine to glutamine at position-4. Cell 45: 343, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Diuguid DL, Rabiet M-J, Furie BC, Liebman HA, Furie B: Molecular basis of hemophilia B: a defective enzyme due to an unprocessed propeptide is caused by a point mutation in the factor IX precursor. Proc Natl Acad Sci USA 83: 5803, 1986.PubMedCrossRefGoogle Scholar
  15. 15.
    Gianelli F, Green PM, High K, Lozier DP, Lillicrap DP, Ludwig M, Olek K, Reitsma PH, Goossens M, Yoshitake A, Sommer S, Brownlee GG: Haemophilia B database of point mutations and short additions and deletions. Nucleic Acids Res in press. Google Scholar
  16. 16.
    Jorgensen MJ, Cantor AB, Furie BC, Brown CL, Shoemaker CB, Furie B: Recognition site directing vitamin K-dependent γ-carboxylation resides on the propeptide of factor IX. Cell 48: 185, 1987.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaufman RJ, Wasley LC, Furie BC, Furie B, Shoemaker CB: Expression, purification, and characterization of recombinant γ-carboxylated factor IX synthesized in Chinese hamster ovary cells. J Biol Chem 261: 9622, 1986.PubMedGoogle Scholar
  18. 18.
    Foster DC, Rudinski MS, Shach BG, Berkner KL, Kumar AA, Hagen FS, Sprecher CA, Insley MY, Davie EW. Propeptide of human protein C is necessary for γ-carboxylation. Biochemistry 26: 7003, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Suttie JW, Hoskins JA, Engelke J, Hopfgartner A, Ehrlich H, Bang NU, Belagaje RM, Schoner B, Long GL: Vitamin K-dependent carboxylase: possible role of the substrate ‘Propeptide’ as an intracellular recognition site. Proc Natl Acad Sci USA 84: 634, 1987.PubMedCrossRefGoogle Scholar
  20. 20.
    Suttie JW: Vitamin K-dependent carboxylase. Annu Rev Biochem 54: 459, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Furie B, Furie BC: Molecular basis of vitamin K-dependent γ-carboxylation. Blood 75: 1753, 1990.PubMedGoogle Scholar
  22. 22.
    Bajaj SP: Cooperative Ca2+ binding to human factor IX. J Biol Chem 257: 4127, 1982.PubMedGoogle Scholar
  23. 23.
    Rees DJG, Jones IM, Handford PA, Walter SJ, Esnouf MP, Smith KJ, Brownlee GG: The role of β-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J 7: 2053, 1988.PubMedGoogle Scholar
  24. 24.
    Handford PA, Baron M, Mayhew M, Willis A, Beesley T, Brownlee GG, Campbell ID: The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J 9: 475, 1990.PubMedGoogle Scholar
  25. 25.
    Fernlund P, Stenflo J: β-hydroxyaspartic acid in vitamin K-dependent proteins. J Biol Chem 258: 12509, 1983.PubMedGoogle Scholar
  26. 26.
    Yoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K: Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 24: 3736, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Leytus SP, Foster DC, Kurachi K, Davie EW: Gene for factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C. Biochemistry 25: 5098, 1986.PubMedCrossRefGoogle Scholar
  28. 28.
    O’Hara PJ, Grant FJ, Haldeman BA, Insley MY, Murray MJ: Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein participating in blood coagulation. Proc Natl Acad Sci USA 84: 5158, 1987.PubMedCrossRefGoogle Scholar
  29. 29.
    Plutzky J, Hoskins JA, Long GL, Crabtree GR: Evolution and organization of the human protein C gene. Proc Natl Acad Sci USA 83: 546, 1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Foster DC, Yoshitake S, Davie EW: The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci USA 82: 4673, 1985.PubMedCrossRefGoogle Scholar
  31. 31.
    Degen SJF, Davie EW: Nucleotide sequence of the gene for human prothrombin. Biochemistry 26: 6165, 1987.PubMedCrossRefGoogle Scholar
  32. 32.
    Irwin DM, Robertson KA, MacGillivray RTA: Structure and evolution of the bovine prothrombin gene. J Mol Biol 200: 31, 1988.PubMedCrossRefGoogle Scholar
  33. 33.
    Whittaker DL, Copeland DL, Graham JB: Linkage of color blindness to hemophilias A and B. Am J Hum Genet 14: 149, 1962.PubMedGoogle Scholar
  34. 34.
    Chance PF, Dyer KA, Kurachi K, Yoshitake S, Ropers H-H, Wieacker P, Gartler SM: Regional localization of the human factor IX gene by molecular hybridization. Hum Genet 65: 207, 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Camerino G, Grzeschik KH, Jaye M, de la Salle H, Tolstoshev P, Lecocq JP, Heilig R, Mandel JL: Regional localization on the human X chromosome and polymorphism of the coagulation factor IX gene (hemophilia B locus). Proc Natl Acad Sci USA 81: 498, 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Purello M, Alhadeff B, Esposito D, Szabo P, Rocchi M, Truett M, Masiarz F, Siniscalco M: The human genes for hemophilia A and hemophilia B flank the X chromsosome fragile site at Xq27.3. EMBO J 4: 725, 1985.Google Scholar
  37. 37.
    Mattei MG, Baetman MA, Heilig R, Oberle I, Davies K, Mandel JL, Mattei JF: Localization by in situ hybridization of the coagulation factor IX gene and of two polymorphic DNA probes with respect to the fragile X site. Hum Genet 69: 327, 1985.PubMedCrossRefGoogle Scholar
  38. 38.
    Rocchi M, Roncuzzi L, Santamaria R, Sparra D, Mochi M, Archidacono N, Covone A, Cortese R, Romeo G: Mapping of coagulation factor protein C and factor X on chromosome 2 and 13, respectively. Cytogenet Cell Genet 40: 734, 1985.Google Scholar
  39. 39.
    Scambler P, Williamson R: The structural gene for human coagulation factor X is located on chromosome 13q34. Cytogenet Cell Genet 39: 231, 1985.PubMedCrossRefGoogle Scholar
  40. 40.
    Royle NJ, Fung MR, MacGillivray RTA, Hamerton JL: The gene for clotting factor 10 is mapped to 13q32-qter. Cytogenet Cell Genet 41: 185, 1986.PubMedCrossRefGoogle Scholar
  41. 41.
    Gilgenkrantz S, Briquel M-E, Andre E, Alexandre P, Jalbert P, LeMarec B, Pouzol P, Pommereuil M: Structural genes of coagulation factor VII and factor X located on 13q34. Ann Genet 29: 32, 1986.PubMedGoogle Scholar
  42. 42.
    Kato A, Miura O, Sumi Y, Aoki N: Assignment of the human protein C gene (PROC) to chromosome region 2q14-q21 by in situ hybridization. Cytogenet Cell Genet 47: 46, 1988.PubMedCrossRefGoogle Scholar
  43. 43.
    Long GL, Marshall A, Gardner JC, Naylor SL: Genes for human vitamin Independent plasma proteins C and S are located on chromosomes 2 and 3, respectively. Somat Cell Molec Genet 14: 93, 1988.PubMedCrossRefGoogle Scholar
  44. 44.
    Breathnach R, Chambon P: Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50: 349, 1981.PubMedCrossRefGoogle Scholar
  45. 45.
    Workman JL, Roeder RG: Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51: 613, 1987.PubMedCrossRefGoogle Scholar
  46. 46.
    Bucher P, Trifonov EN: Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res 14: 10009, 1986.PubMedCrossRefGoogle Scholar
  47. 47.
    Maniatis T, Goodbourn S, Fischer JA: Regulation of inducible and tissue-specific gene expression. Science 236: 1237, 1987.PubMedCrossRefGoogle Scholar
  48. 48.
    Crossley M, Brownlee GG: Disruption of a C/EBP binding site in the factor IX promoter is associated with hemophilia B. Nature 345: 444, 1990.PubMedCrossRefGoogle Scholar
  49. 49.
    Reitsma PH, Mandalaki T, Kasper CK, Bertina RM, and Briet E: Two novel point mutations correlate with an altered developmental expression of blood coagulation factor IX (hemophilia B Leyden phenotype). Blood 73: 743, 1989.PubMedGoogle Scholar
  50. 50.
    Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM: Characterization of the human factor VIII gene. Nature 312: 326, 1984.PubMedCrossRefGoogle Scholar
  51. 51.
    Evans JP, Watzke HH, Ware JL, Stafford DW, High KA: Molecular cloning of a cDNA encoding canine factor IX. Blood 74: 207, 1989.PubMedGoogle Scholar
  52. 52.
    Briet E, Bertina RM, Van Tilburg NH, Veitkamp JJ: A sex-linked hereditary disorder that improves after puberty. N Eng J Med 306: 788, 1982.CrossRefGoogle Scholar
  53. 53.
    Reitsma PH, Bertina RM, Ploos van Amstel JK, Riemens A, Briet E: The putative factor IX gene promoter in hemophilia B Leyden. Blood 72: 1074, 1988.PubMedGoogle Scholar
  54. 54.
    Kurachi K, Hirosawa S, Fahner JB, Wu CT, Salier JP: Regulation of human factor IX gene. Thromb Haemostas 62: 154, 1989.Google Scholar
  55. 55.
    Mulvihill ER, Palmiter RD: Relationship of nuclear estrogen receptor levels in induction of ovalbumin and conalbumin mRNA in chick oviduct. J Biol Chem 252: 2060, 1977.PubMedGoogle Scholar
  56. 56.
    Lin Y-S, Carey M, Ptashne M, Green MR: How different eukaryotic transcriptional activators can cooperate promiscuously. Nature 345: 359, 1990.PubMedCrossRefGoogle Scholar
  57. 57.
    Lin S-W, Dunn JJ, Studier FW, Stafford DW: Expression of human factor IX and its subfragments in Escherichia coli and generation of antibodies to the subfragments. Biochemistry 26: 5267, 1987.PubMedCrossRefGoogle Scholar
  58. 58.
    Anson DS, Austen DEG, Brownlee GG: Expression of active human clotting factor IX from recombinant DNA clones in mammalian cells. Nature 315: 683, 1985.PubMedCrossRefGoogle Scholar
  59. 59.
    De la Salle H, Altenberger W, Elkaim R, Dott K, Dieterle A, Drillien R, Cazenave J-P, Tolstoshev P, Lecocq J-P: Active γ-carboxylated factor IX expressed using recombinant DNA techniques. Nature 316: 268, 1985.PubMedCrossRefGoogle Scholar
  60. 60.
    Busby S, Kumar A, Joseph M, Halfpap L, Insley M, Berkner K, Kurachi K, Woodbury R: Expression of active human factor IX in transfected cells. Nature 316: 271, 1985.PubMedCrossRefGoogle Scholar
  61. 61.
    Choo KH, Raphael K, McAdam W, Peterson MG: Expression of active human blood clotting factor IX in transgenic mice: use of a cDNA with complete mRNA sequence. Nucleic Acids Res 15: 871, 1987.PubMedCrossRefGoogle Scholar
  62. 62.
    St.Louis D, Verma IM: An alternative approach to somatic cell gene therapy. Proc Natl Acad Sci USA 85: 3150, 1988.PubMedCrossRefGoogle Scholar
  63. 63.
    Palmer TD, Thompson AR, Miller AD: Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood 73: 438, 1989.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • D. B. C. Ritchie
    • 1
  • D. L. Robertson
    • 1
  • R. T. A. MacGillivray
    • 1
  1. 1.Department of BiochemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations