Factors Limiting Expression of Secreted Proteins in Mammalian Cells

  • Randal J. Kaufman
  • Robert J. Wise
  • Louise C. Wasley
  • Andrew J. Dorner


Gene expression may be controlled at the level of transcription, processing of precursor mRNAs, mRNA transport to the cytoplasm, mRNA stability and translational efficiency, and protein stability. Proteins which transit the secretory apparatus are subject to a variety of additional steps which may regulate the appropriate secretion of the mature polypeptide. Experience from studying the expression of a wide variety of proteins which transit the secretory apparatus demonstrates that the rate limiting step in secretion is transport from the endoplasmic reticulum (ER) to the Golgi apparatus. It is now known that expression of heterologous secretory proteins from transfected genes introduced into heterologous cells may also be limited due to inefficient transport from the ER to Golgi. In addition, a wide variety of post-translational steps which are required for appropriate maturation and biological activity of a protein may be saturated as the expression of the specific protein is increased. Our work has focused on the limiting steps for the secretion of these heterologous proteins expressed at high level in Chinese hamster ovary (CHO) cells. In general, the factors limiting expression of these proteins are at the post-translational events which occur within the secretory pathway.


Conditioned Medium Factor VIII Chinese Hamster Ovary Cell Sodium Butyrate Signal Recognition Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lodish, H.F., Kong, N., Snider, M., Strous, G.J.A.M. (1983) Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304: 80–83.PubMedCrossRefGoogle Scholar
  2. 2.
    Bernstein, H.D., Poritz, M.A., Strub, K., Hoben, P.J., Brenner, S., and Walter, P. (1989) Model for signal sequence recognition from amino-acid sequence of 54 K subunit of signal recognition particle. Nature 340: 482–486.PubMedCrossRefGoogle Scholar
  3. 3.
    Blobel, G. and Dobberstein, B (1975) Transfer of protein across membranes. I. Presence of proteolytically processed and unprocessed hascent immunoglobulin light chains on mambrane-bound ribosomes of murine myeloma. J. Cell Biol. 62: 835–851.CrossRefGoogle Scholar
  4. 4.
    Kornfeld, R., and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem., 54: 631–6PubMedCrossRefGoogle Scholar
  5. 5.
    Hurtley, S.M., and Helenius, A. (1989) Protein oligomerization in the endoplasmic reticulum. Ann. Rev. Biochem. 57: 277–307.Google Scholar
  6. 6.
    Freedman, R.B., Bulleid, N.J., Hawkins, H.C., and Paver, J.L. (1989) Role of protein disulphide-isomerase in the expression of native proteins. Biochem. Soc. Symp. 55: 167–192.PubMedGoogle Scholar
  7. 7.
    Friedman, P.A., and Przysiecki, C.T. (1987) Vitamin K dependent carboxylation. Int. J. Biochem. 19: 1–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Towler, D.A., Gordon, J.I., Adams, S.P., Glaser, L. (1988) The biology and enzymology of eukaryotic protein acylation. Ann. Rev. Biochem. 57: 69–99.PubMedCrossRefGoogle Scholar
  9. 9.
    Clary, D.O., Griff, I.C., and Rothman, J.E. (1990) SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61: 709–721.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaiser, C.A., and Schekman, R. (1990) Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway. Cell 61.: 723–733.PubMedCrossRefGoogle Scholar
  11. 11.
    Huttner, W.B., Baeuerle, P.A. (1988) Protein sulfation on tyrosine. In: Modern Cell Biology. Birgit H Satiri (ed). Alan R. Liss, Inc N.Y., N.Y. 6: 97–140.Google Scholar
  12. 12.
    Thomas, G., Thorne, B.A., Hruby, D.E. (1988) Gene transfer techniques to study neuropeptide processing. Annu. Rev. Physiol. 50: 323–332.PubMedCrossRefGoogle Scholar
  13. 13.
    Furie, B., and Furie, B.C. (1990) Molecular basis of vitamin K-dependent g-carboxylation. Blood 75: 1753–1762.PubMedGoogle Scholar
  14. 14.
    Burgess, T.L., and Kelley, R.B. (1987) Constitutive and regulated secretion of proteins. Ann. Rev. Cell Biol. 106: 629–639.Google Scholar
  15. 15.
    Rothman, J.E. (1987) Protein sorting by selective retention in the endoplasmic retriculum and Golgi stack. Cell 50: 1–23.CrossRefGoogle Scholar
  16. 16.
    Pelham, H.R.B. (1989) Control of protein exit from the endoplasmic reticulum. Ann. Rev. Cell. Biol. 5: 1–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Munro, S., and Pelham, H.R.B. (1986) An hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.PubMedCrossRefGoogle Scholar
  18. 18.
    Chang, S.C., Wooden, S.K., Nakaki, T., Kim, T.K., Lin, A.Y., Kung, L., Attenello, J.W., and Lee, A.S. (1987) Rat gene encoding the 78-kDa glucose-regulated protein GRP78: Its regulatory sequences and the effect of protein glycosylation on its expression. Proc. Natl. Acad. Sci. 84: 680–684.PubMedCrossRefGoogle Scholar
  19. 19.
    Kozutsumi, Y., Segal, M., Normington, K., Gething, M-J., and Sambrook, J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462–464.PubMedCrossRefGoogle Scholar
  20. 20.
    Watowich, S.S., and Morimoto, R.I. (1988) Complex regulation of heat shock-and glucose-responsive genes in human cells. Mol. Cell. Biol. 8: 393–405.PubMedGoogle Scholar
  21. 21.
    Kassenbrock, C.K., and Kelly, R.B. (1989) Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. EMBO J. 8: 1461–1467.PubMedGoogle Scholar
  22. 22.
    Bole, D.G., Hendershot, L.M., and Kearney, J.F. (1986) Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102: 1558–1566.PubMedCrossRefGoogle Scholar
  23. 23.
    Hurtley, S.M., Bole, D.G., Hoover-Litty, H., Helenius, A., and Copeland, C.S. (1989) Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP). J. Cell. Biol. 108: 2117–2126.PubMedCrossRefGoogle Scholar
  24. 24.
    Dorner, A.J., Bole. D.G., and Kaufman, R.J. (1987) The relationship of N-linked glycosylation and heavy chain binding protein association with the secretion of glycoproteins. J. Cell Biol. 105: 2665–2674.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, I., Doms, R.W., Wagner, K.R., and Helenius, A. (1990) Intracellular transport of soluble and membrane-bound glycoproteins: Folding, assembly, and secretion of anchor-free influenza hemagglutinin. EMBO J. 9: 631–639.PubMedGoogle Scholar
  26. 26.
    Machamer, C.E., Doms, R.W., Bole, D.G., Helenius, A., and Rose, J.K. (1990) Heavy-chain binding-protein recognizes incompletely disulphide-bonded forms of vesicular stomatitis virus G protein. J. Biol. Chem. 265: 6879–6883.PubMedGoogle Scholar
  27. 27.
    Kaufman, R.J., Wasley, L.C., Davies, M.V., Wise, R.J., Israel, D.I., and Dorner, A.J. (1989) Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. Mol. Cell. Biol. 9: 1233–1242.PubMedGoogle Scholar
  28. 28.
    Ng, D.T.W., Randall, R.E., and Lamb, R.A. (1989) Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase: Specific and transient association with GRP78-BiP in the endoplasmic reticulum and extensive internalization from the cell surface. J. Cell Biol. 109: 3273–3289.PubMedCrossRefGoogle Scholar
  29. 29.
    Dorner, A.J., Krane, M.A.G., and Kaufman, R.J. (1988) Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells. Mol. Cell. Biol. 8: 4063–4070.PubMedGoogle Scholar
  30. 30.
    Dorner, A.J., Wasley, L.C., and Kaufman, R.J. (1989) Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264: 20602–20607.PubMedGoogle Scholar
  31. 31.
    Flynn, G.C., Chappell, T.G., and Rothman, J.E. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–390.PubMedCrossRefGoogle Scholar
  32. 32.
    Jamieson, J.D., and Palade, G.E. (1968) Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J. Cell Biol. 39: 589–603.Google Scholar
  33. 33.
    Heytier, P.G. (1963) Uncoupling of oxidative phosphorylation by carbonylcyanamide phenyhydrazones. I. Some characteristics of m-C1-CCP action on mitochondria and chloroplasts. Biochemistry 2: 357–361.CrossRefGoogle Scholar
  34. 34.
    Argon, Y., Burkhardt, J.K., Leeds, J.M., and Milstein, C. (1989) Two steps in the intracellular transport of IgD are sensitive to energy depletion. J. Immunol. 142: 554–561.PubMedGoogle Scholar
  35. 35.
    Dorner, A.J., Wasley, L.C., and Kaufman, R.J. (1990) Protein dissociation from GRP78 and secretion is blocked by depletion of cellular ATP levels. Proc. Natl. Acad. Sci. (in Press).Google Scholar
  36. 36.
    Balch, W.E., Elliott, M.M., and Keller, D.S. (1986) ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi. J. Biol. Chem. 261: 14681–14689.PubMedGoogle Scholar
  37. 37.
    Balch, W.E., and Keller, D.S. (1986) ATP-coupled transport of vesicular stomatitis virus G protein: Functional boundaries of secretory compartments. J. Biol. Chem. 261: 14690–14696.PubMedGoogle Scholar
  38. 38.
    Bulleid, N.J., and Freedman, R.B. (1988) Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 335: 649–651.PubMedCrossRefGoogle Scholar
  39. 39.
    Kaufman, R.J., Wasley, L.C., Furie, B.C., Furie, B., and Shoemaker, C.B. (1986) Expression, purification, and characterization of recombinant γ-carboxylated factor IX synthesized in Chinese hamster ovary cells. J. Biol. Chem. 261: 9622–9628.PubMedGoogle Scholar
  40. 40.
    Pittman, D.D., and Kaufman, R.J. (1989) Structure-function relationships of factor VIII elucidated through recombinant DNA technology. Thrombosis and Haemostasis 61: 161–165.PubMedGoogle Scholar
  41. 41.
    Mikkelsen, J., Thomsen, J., Kongerslev, L., Christensen, and Ezban, M. (1989) Heterogeneity in the tyrosine sulfation of Chinese hamster ovary cell produced recombinant FVIII. Thrombosis and Haemostasis 62: 197a.Google Scholar
  42. 42.
    Warren, T.G., and Shields, D. (1984) Expression of preprosomatostatin in heterologous cells: Biosynthesis, posttranslational processing, and secretion of mature somatostatin. Cell 39: 547–555.PubMedCrossRefGoogle Scholar
  43. 43.
    Hellerman, J.G., Cone, R.C., Potts, J.T., Rich, A., Mulligan, R.C., and Kronenberg, H.M. (1984) Secretion of human parathyroid hormone from rat pituitary cells infected with a recombinant retrovirus encoding preproparathyroid hormone. Proc. Natl. Acad. Sci. 81: 5340–5344.PubMedCrossRefGoogle Scholar
  44. 44.
    Gentry, L.E., Webb, N.R., Lim, G.J., Brunner, AmM., Ranchalis, J.E., Twardzik, D.R., Lioubin, M.N., Marquardt, H., and Purchio, A.F. (1987) Type 1 transforming growth factor ß: Amplified expression and secretion of mature and precursor polypeptides in Chinese hamster ovary cells. Mol. Cell. Biol. 7: 3418–3427.PubMedGoogle Scholar
  45. 45.
    Foster, D.C., Sprecher, CA., Holly, R.D., Gambee, J.E., Walker, K.M., and Kumar, A.A. (1990) Endoproteolytic processing of the dibasic cleavage site in the human protein C precursor in transfected mammalian cells: Effects of sequence alterations on efficiency of cleavage. Biochemistry 29: 347–354.PubMedCrossRefGoogle Scholar
  46. 46.
    Derian, C.K., VanDusen, W., Przysiecki, C.T., Walsh, P.N., Berkner, K.L., Kaufman, R.J., and Friedman, P.A. (1989) Inhibitors of 2-ketoglutarate-dependent dioxygenases block aspartyl ß-hydroxylation of recombinant human factor IX in several mammalian expression systems. J. Biol. Chem. 264: 6615–6618.PubMedGoogle Scholar
  47. 47.
    Mizuno, K., Nakamura, T., Oshima, T., Tanaka, S., and Matsuo, H. (1989) Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem, Biochys Res. Commun. 156: 246–254.CrossRefGoogle Scholar
  48. 48.
    Fuller, R.S., Brake, A.J., and Thorner, J. (1989) Yeast prohormone processing enzyme (KEX2 gene product) is a Ca-dependent serine protease. Proc. Natl. Acad. Sci. 86: 1434–1438.PubMedCrossRefGoogle Scholar
  49. 49.
    Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Isolation of the putative structural gewne for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell 37: 1075–1089.PubMedCrossRefGoogle Scholar
  50. 50.
    Julius, D., Schekman, R., and Thorner, J. (1984) Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell 36: 309–318.PubMedCrossRefGoogle Scholar
  51. 51.
    Thim, L., Hansen, M.T., Norris, K., Hoegh, I., Boel, E., Forstrom, J., Ammerer, G., and Fiil, N.P. (1986) Secretion and processing of insulin precursors in yeast. Proc. Natl. Acad. Sci. 83: 6766–6770.PubMedCrossRefGoogle Scholar
  52. 52.
    Sleep, D., Belfield, G.P., and Goodey, A.R. (1990) The secretion of human serum albumin from the yeast Saccharomyces cerevisiae using five different leader sequences. Bio/Technology 8.: 42–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Thomas, G., Thome, B.A., Thomas, L., Allen, R.G., Hruby, D.E., Fuller, R., and Thorner, J. (1988) Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241: 226–230.PubMedCrossRefGoogle Scholar
  54. 54.
    Wise, R.J., Barr, P.J., Wong, P.A., Bathurst, I.C., Brake, A.J., and Kaufman, R.J. (1990) Expression of a cDNA encoding a human proprotein processing enzyme: Correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc. Natl. Acad. Sci. (in press).Google Scholar
  55. 55.
    Handin R.I., and Wagner, D.D. (1989) in Progress in Hemostssis and Thrombosis 9: B.S. Coller, Ed. W.B. Saunders, Philadelphia, p233–259.Google Scholar
  56. 56.
    Wise, R.J., Pittman, D.D., Handin, R, I., Kaufman, R.J., and Orkin, S.H. (1988) The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers. Cell 52: 229–236.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Randal J. Kaufman
    • 1
  • Robert J. Wise
    • 1
  • Louise C. Wasley
    • 1
  • Andrew J. Dorner
    • 1
  1. 1.Genetics InstituteCambridgeUSA

Personalised recommendations