Advertisement

Biosynthesis and Assembly of the Factor VIII-Von Willebrand Factor Complex

  • Jan A. van Mourik
  • Anja Leyte
  • Harm B. van Schijndel
  • Martin Ph. Verbeet
  • Jan Voorberg
  • Ruud D. Fonteijn
  • Hans Pannekoek
  • Koen Mertens

Abstract

Factor VIII and the von Willebrand factor (vWF) are plasma proteins that serve an essential role in the hemostatic proces; factor VIII functions as a cofactor in the intrinsic coagulation pathway (1, 2) whereas vWF is hemostatically important in the mediation of platelet-vessel wall interactions at sites of vascular injury (3, 4). In blood, factor VIII and vWF are not present as distinct proteins but rather circulate as a linked complex. Several lines of evidence indicate that this phenomenon is of physiological significance. For instance, it now seems clear that vWF functions as a carrier protein and as such has a stabilizing effect on factor VIII. This view stems from the observation that reduced or absent synthesis of vWF (as seen in von Willebrand’s disease) is associated with markedly reduced concentrations, or absence, of plasma factor VIII (5). Similarly, a rise in vWF concentration, as observed in disorders associated with acute-phase reactions, is accompanied with concommitant rises in plasma factor VIII concentrations (6). Taken into account that the half life of factor VIII infused in animals is determined by the presence of endogenous vWF (7), and vWF also stabilizes factor VIII in vitro (8), these observations clearly illustrate that vWF not only binds to factor VIII but also confers stability to factor VIII. As vWF protects factor VIII from proteolytic attack by proteases including thrombin and activated factor X (9, 10), it seems likely that limited proteolysis is a factor that determines the stability of factor VIII in vitro and in vivo. The importance of the apparent stabilizing effect of vWF on factor VIII is underscored by recent observations which show that an aberrant interaction between factor VIII and vWF predisposes to a bleeding diathesis (11, 12) Taken together, these observations clearly document the physiological importance of the factor VIII-vWF complex formation.

Keywords

Factor VIII Sinusoidal Endothelial Cell Tyrosine Sulfation Plasma Factor VIII Antihemophilic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Dieijen G, Tans G, Rosing J, Hemker H C: The role of phospholipid and factor Villa in the activation of bovine factor X. J Biol Chem 256: 3433, 1981.PubMedGoogle Scholar
  2. 2.
    Mertens K, van Wijngaarden A, Bertina R M: The role of factor VIII in the activation of human blood coagulation factor X by activated factor IX. Thromb Haemostas 54: 654, 1985.Google Scholar
  3. 3.
    Tschopp T B, Weiss H J, Baumgartner H J: Decreased adhesion of platelets to subendothelium in von Willebrand’s disease. J Lab Clin Med 83: 206, 1974.Google Scholar
  4. 4.
    Sakariassen K S, Bolhuis P A, Sixma J J: Human platelet adherence to artery subendothelium is mediated by factor VIII-von Willebrand factor bound to the subendothelium. Nature 279: 636, 1979.PubMedCrossRefGoogle Scholar
  5. 5.
    Ruggeri Z M, Zimmerman T S: Von Willebrand factor and von Willebrand disease. Blood 70: 895, 1987.PubMedGoogle Scholar
  6. 6.
    Bloom A L: The biosynthesis of factor VIII. Clin Haemat 8: 53, 1979.PubMedGoogle Scholar
  7. 7.
    Brinkhous K M, Sanberg H, Garvis J B, Mattsson C, Palm M, Griggs T, Read M S: Purified human factor VIII procoagulant protein: comparative hemostatic response after infusion into hemophilic and von Willebrand disease dogs. Proc Natl Acad Sci USA 82: 8752, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    Weiss H J, Sussman I I, Hoyer L W: Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on post-transfusion and dissociated factor VIII and in patients with von Willebrand’s disease. J Clin Invest 60: 390, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Koedam J A, Meijers J CM, Sixma J J, Bouma B N: Inactivation of human factor VIII by activated protein C. Cofactor activity of protein S and protective effect of von Willebrand factor. J Clin Invest 82: 1236, 1988.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamer R J: in: FVIII: isolation, characterization and interaction with von Willebrand factor. Doctoral Thesis, University of Utrecht, ICG Printing BV, Dordrecht 1986.Google Scholar
  11. 11.
    Nishino M, Girma J P, Rothschild C, Fressinaud E, Meyer D: New variant of von Willebrand disease with defective binding to factor VIII. Blood 74: 1591, 1989.PubMedGoogle Scholar
  12. 12.
    Mazurier C, Dieval J, Jorieux S, Delobel J, Goudemand M: A new von Willebrand factor (vWF) defect in a patient with factor VIII (FVIII) deficiency but with normal levels and multimeric patterns of both plasma and platelet vWF. Characterization of abnormal vWF/FVIII interaction. Blood 75: 20, 1990.PubMedGoogle Scholar
  13. 13.
    Bloom A L, Gidding J C, Wilks C J: Factor VIII on the vascular intima: possible importance in haemostasis and thrombosis. Nature New Biol 241: 217, 1973.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoyer L W, de los Santos R P, Hoyer J R: Antihemophilic factor antigen. Localization in endothelial cells by immunofluorescence microscopy. J Clin Invest 52: 2737, 1973.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaffe E A, Hoyer, L W, Nachman R L: Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci USA 71: 1906, 1974.PubMedCrossRefGoogle Scholar
  16. 16.
    Folkman J, Haudenschild C C, Zetter B R: Long-term culture of cappillary endothelial cells. Proc Natl Acad Sci USA 76: 5217, 1979.PubMedCrossRefGoogle Scholar
  17. 17.
    Nachman R L, Levine R, Jaffe E A: Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest 60: 914, 1977.PubMedCrossRefGoogle Scholar
  18. 18.
    Sporn L A, Chavin S I, Marder V J: Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 76: 1102, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Reinders J H, de Groot Ph G, Dawes J, Hunter N R, van Heugten H A A, Zandbergen J, Gonsalves M D, van Mourik J A: Comparison of secretion and subcellular localization of von Willebrand protein with that of thrombospondin and fibronectin in cultured human vascular endothelial cells. Biochim Biophys Acta 844: 306, 1985.PubMedCrossRefGoogle Scholar
  20. 20.
    Loesberg C, Gonsalves M D, Zandbergen J, Willems Ch, van Aken W G, Stel H V, van Mourik J A, de Groot Ph G: The effect of calcium on the secretion of factor VHI-related antigen by cultured human endothelial cells. Biochim Biophys Acta 763: 160, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Levine J D, Harlan J M, Harker L A: Thrombin-mediated release of factor VIII antigen from umbilical vein endothelial cells in culture. Blood 60: 531, 1982.PubMedGoogle Scholar
  22. 22.
    Sporn L A, Marder V J, Wagner D D: Inducible secretion of large biologically potent von Willebrand factor multimers. Cell 46: 185, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Reinders J H, de Groot Ph G, Sixma J J, van Mourik J A: Storage and secretion of von Willebrand factor by endothelial cells Haemostasis 18: 246, 1988.PubMedGoogle Scholar
  24. 24.
    Ewenstein N M, Warhol M J, Handin R I, Pober J S: Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells. J Cell Biol 104: 1423, 1987.PubMedCrossRefGoogle Scholar
  25. 25.
    Wagner D D, Oluisted J B, Marder V J: Immunolocalization of von Willebrand factor protein in Weibel Palade bodies of human endothelial cells. J Cell Biol 95: 355, 1982.PubMedCrossRefGoogle Scholar
  26. 26.
    Verwey C L, Diergaarde P, Hart M, Pannekoek H: Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein, considerably larger than the mature vWF subunit. EMBO J 5: 1839, 1986.Google Scholar
  27. 27.
    Fay P F, Kawai Y, Wagner D D, Ginsburg D, Bonthron D, Ohlsson-Wilhelm B M, Chavin S I, Abraham G N, Handin R I, Orkin S H, Montgomery R R, Marder V: Pro-polypeptide of von Willebrand antigen II. Science 232: 995, 1986.PubMedCrossRefGoogle Scholar
  28. 28.
    Fretto L J, Fowler W E, McCaslin D R, Erickson H P, McKee P A: Substructure of human von Willebrand factor. J Biol Chem 261: 15679, 1986.PubMedGoogle Scholar
  29. 29.
    Marti T, Rösselet S J, Titani K, Walsch K A: Identification of disulfide-bridged substructures within human von Willebrand factor. Biochemistry 26: 8099, 1987.PubMedCrossRefGoogle Scholar
  30. 30.
    Wagner D D, Marder V J: Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol 99: 2123, 1984.PubMedCrossRefGoogle Scholar
  31. 31.
    Titani K, Kumar S, Takio K, Erisson L H, Wade R D, Ashida K, Walsh K A, Chopek M W, Sadler E, Fujikawa K: Amino acid sequence of human von Willebrand factor. Biochemistry 25: 3171, 1986.PubMedCrossRefGoogle Scholar
  32. 32.
    Bonthron D T, Handin R I, Kaufman R J, Wasley L C, Orr E C, Mitsock L M, Ewenstein B, Loscalzo J, Ginsburg D, Orkin S H: Structure of prepro-von Willebrand factor and its expression in heterologous cells, Nature 324: 270, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Shelton-Inloes B B, Titani K, Sadler J E: cDNA sequences for human von Willebrand factor reveal five types of repeated domains and five possible protein sequence polymorphisms. Biochemistry 25: 3164, 1986.PubMedCrossRefGoogle Scholar
  34. 34.
    Verwey C L, Hart M, Pannekoek H: Expression of variant von Willebrand factor (vWF) cDNA in heterologous cells: requirement of the propolypeptide in vWF multimer assembly. EMBO J 6: 2885, 1987.Google Scholar
  35. 35.
    Wise R J, Pittman D D, Haudin R I, Kaufman R J, Orkin S H: The propolypeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers. Cell 52: 229, 1988.PubMedCrossRefGoogle Scholar
  36. 36.
    Mayadas T, Wagner D D: In vitro multimerization of von Willebrand factor is triggered by low pH. J Biol Chem 264: 13497, 1989.PubMedGoogle Scholar
  37. 37.
    Verwey C L, Hart M, Pannekoek H: Proteolytic cleavage of the precursor of von Willebrand factor (pro-vWF) is not essential for multimer formation. J Biol Chem 263: 7921, 1988.Google Scholar
  38. 38.
    Voorberg J, Fontijn R, van Mourik J A, Pannekoek, H: Domains involved in multimer assembly of von Willebrand factor (vWF): multimerization is independent of dimerization. EMBO J 9: 797, 1990.PubMedGoogle Scholar
  39. 39.
    Wagner D D, Fay P J, Sporn L A, Sinha S, Lawrence S O, Marder V J: Divergent fates of von Willebrand factor and its propolypeptide (von Willebrand antigen II) after secretion from endothelial cells. Proc Natl Acad Sci USA 84: 1955, 1987.PubMedCrossRefGoogle Scholar
  40. 40.
    Stel H V, van der Kwast Th H, Veerman E C I: Detection of factor VHI/coagulant antigen in human liver tissue. Nature 303: 530, 1983.PubMedCrossRefGoogle Scholar
  41. 41.
    Owen Ch A, Bowie E J W, Fass D N: Generation of factor VIII coagulant activity by isolated, perfused neonatal pig livers and adult rat livers. Brit J Haematol 43: 307, 1979.CrossRefGoogle Scholar
  42. 42.
    Shaw E, Giddings J C, Peake I R, Bloom A L: Synthesis of procoagulant factor VIII, factor VIII releated antigen and other coagulation factors by the isolated perfused rat liver. Brit J Haematol 41: 585, 1979.CrossRefGoogle Scholar
  43. 43.
    Lewis J H, Bontempo F A, Spero J A, Ragni M V, Starzl T E: Liver transplantation in a hemophiliac. N Engl J Med 312: 1189, 1985.PubMedGoogle Scholar
  44. 44.
    Zelechowska M G, van Mourik J A, Brodniewics-Proba T: Ultrastructural localization of factor VIII procoagulant antigen in human liver hepatocytes. Nature 317: 726, 1985.CrossRefGoogle Scholar
  45. 45.
    Wion K L, Kelly D A, Summerfield J A, Tuddenham E G D, Lawn R M: Distribution of factor VIII mRNA and antigen in human liver and other tissues, Nature 317: 726, 43, 1985.PubMedCrossRefGoogle Scholar
  46. 46.
    Hellman L, Smedröd B, Sandberg H, Petterson U: Secretion of coagulant factor VIII activity and antigen in vitro cultivated rat liver sinusoidal endothelial cells. Brit J Haematol 73: 348, 1989.CrossRefGoogle Scholar
  47. 47.
    Owen W G, Wagner R H: Antihemophilic factor: Separation of an active fragment following dissociation by salts or detergents. Thromb Diath Haemorrh 27: 502, 1972.PubMedGoogle Scholar
  48. 48.
    Leyte A, Verbeet M Ph, Brodniewicz-Proba T, van Mourik J A, Mertens, K: The interaction between human blood-coagulation factor VIII and von Willebrand factor. Biochem J 257: 697, 1989.Google Scholar
  49. 49.
    Foster P A, Fulcher C A, Marti T, Titani K, Zimmerman T S: A major factor VIII binding domain resides within the aminoterminal 272 amino acid residues of von Willebrand factor. J Biol Chem 262: 8443, 1987.PubMedGoogle Scholar
  50. 50.
    Foster P A, Fulcher C A, Houghton R.A., Zimmerman T S: An immunogenic region within amino acid residues Vall 670-Glul 684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor. J Biol Chem 263: 5230, 1988.PubMedGoogle Scholar
  51. 51.
    Takahashi Y., Kalafatis M, Girma J-P, Sewerin K, Andersson L-O, Meyer D: Localization of a factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor. Blood 70: 1679, 1987.PubMedGoogle Scholar
  52. 52.
    Huttner W B, Baeuerle P A. Protein sulfation on tyrosine. Modern cell Biology 6: 97, 1988.Google Scholar
  53. 53.
    Friederich E, Fritz H-J, Huttner W B. Inhibition of Tyrosine sulfation in the trans-Golgi retards the transport of a constitutively secreted protein to the cell surface. J Cell Biol 107: 1655, 1988.PubMedCrossRefGoogle Scholar
  54. 54.
    Hortin G L, Farrier T C, Graham J P, Atkinson J P: Sulfation of tyrosine residues increases activity of the fourth component of complement. Proc Natl Acad Sci USA 86: 1338, 1989.PubMedCrossRefGoogle Scholar
  55. 55.
    Higuchi M, Traystman M, Wong C, Olek K, Kazazian H H, Antonarakis S E: Detection of point mutations in hemophilia A using PCR amplification of selected regions of the factor VIII gene. Thromb Haemostas 62: 201, 1989 (Abstract).Google Scholar
  56. 56.
    Pietu G, Ribba A S, Meulie P, Meyer D: Localization within the 106 N-terminal amino acids of von Willerband factor (vWF) of the epitope corresponding to a monoclonal antibody which inhibits vWF binding to factor VIII. Biochem Biophys Res Comm 613: 618, 1989.CrossRefGoogle Scholar
  57. 57.
    Bahou W F, Ginsburg D, Sikkink R, Litwiller R, Fass D N: A monoclonal antibody to von Willebrand factor (vWF) inhibits factor VIII binding. J Clin Invest 84: 56, 1987.CrossRefGoogle Scholar
  58. 58.
    Counts R B, Paskell S L, Elgee S K: Disulfide bonds and the quarternary structure of factor VIII/von Willebrand factor. J Clin Invest 62: 792, 1978.CrossRefGoogle Scholar
  59. 59.
    Vehar G A, Davie E W (1980) Preparation and properties of bovine factor VIII (antihemophilic factor). Biochemistry 19: 401, 1980.PubMedCrossRefGoogle Scholar
  60. 60.
    Leyte A, Voorberg J, van Schijndel H B, Duim B, Pannekoek H, van Mourik J A: The pro-polypeptide of von Willebrand factor is required for the formation of a functional factor VIII binding site on mature von Willebrand factor: Biochem J, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jan A. van Mourik
    • 1
  • Anja Leyte
    • 1
  • Harm B. van Schijndel
    • 1
  • Martin Ph. Verbeet
    • 1
  • Jan Voorberg
    • 1
  • Ruud D. Fonteijn
    • 1
  • Hans Pannekoek
    • 1
  • Koen Mertens
    • 1
  1. 1.Central Laboratory of the Netherlands Red Cross Blood Transfusion ServiceAD AmsterdamThe Netherlands

Personalised recommendations