Skip to main content

Algebras and Symmetries — Quantum Mechanical Symmetry Breaking

  • Chapter
Symmetries in Science V
  • 209 Accesses

Abstract

The modelling of physical systems and their quantization methods are intimately related with algebras and symmetries. We discuss this relation in the following example:

Consider a (classical non-relativistic) mechanical system, e.g. a one-particle system, localized in R 3 and with a Hamiltonian h as a function on the corresponding phase space Γ(R 3) = R 6.

On leave from Czech Technical University, Faculty of Nuclear Science and Physical Engineering, Btehová 7, CS-115 19 Prague (Czechoslovakia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.O. Barut, R. Raczka: Theory of Group Representations and Applications, PWN — Polish Scientific Publishers, Warszawa (1980).

    Google Scholar 

  2. H.D. Doebner, O. Melsheimer: On representations of Lie algebras with unbounded generators, Nuovo Cimento 49A:73–98 (1967).

    MathSciNet  ADS  Google Scholar 

  3. H.D. Doebner, J.-E. Werth: Global properties of systems quantized via bundles, J. Math. Phys. 20:1011–1014 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M. Flato, D. Sternheimer: Poincaré partially integrable local representations and mass-spectrum, Commun Math. Phys. 12:296–303 (1969).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer: Deformation theory and quantization I, II, Ann. Phys. (N.Y.) 111:61–110, 111–151 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Niederle, J. Tolar: Quantization as mapping and as deformation, Czech. J. Phys. B29:1358–1368 (1979).

    MathSciNet  Google Scholar 

  7. S. Twareque Ali, H.D. Doebner: Ordering problem in quantum mechanics: Prime quantization and a physical interpretation, Phys. Rev. A41:1199–1210 (1990),.

    ADS  Google Scholar 

  8. J.R. Klauder: Quantization is geometry, after all, Ann. Phys. (N.Y.) 188:120–141 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Alvarez-Gaumé: Topology and anomalies. In: Mathematics + Physics, Vol. 2 (Ed. L. Streit) World Scientific, Singapore (1986), 50–83.

    Google Scholar 

  10. N.S. Manton: The Schwinger model and its axial anomaly, Ann. Phys. (N.Y.) 159:220–251 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Alcalde, D. Sternheimer: Analytic vectors, anomalies and star representations, Lett. Math. Phys. 17:117–127 (1989).

    MathSciNet  ADS  MATH  Google Scholar 

  12. B. Angermann, H.D. Doebner, J. Tolar: Quantum kinematics on smooth manifolds. In: Non-linear Partial Differential Operators and Quantization Procedures, Lecture Notes in Mathematics, Vol. 1037, Springer-Verlag, Berlin (1983), 171–208.

    Chapter  Google Scholar 

  13. H.D. Doebner, J. Tolar: Symmetry and topology of the configuration space and quantization. In: Symmetries in Science II (Eds. B. Gruber and R. Lenczewski), Plenum, New York (1986), 115–126.

    Google Scholar 

  14. H.D. Doebner, H.J. Eimers, W.F. Heidenreich: On topological effects in quantum mechanics: The harmonic oscillator in the pointed plane, J. Math. Phys. 30:1053–1059 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Handbook of Mathematical Functions (Eds. M. Abramowitz and I.A. Stegun) Dover, New York (1965).

    Google Scholar 

  16. C. Emmrich, H. Römer: Orbifolds as configuration spaces of systems with gauge symmetries, Commun Math. Phys. 129:69 (1990).

    Article  ADS  MATH  Google Scholar 

  17. M. Reed, B. Simon: Methods of Modern Mathematical Physics, Vols. 1, 2, Academic Press, New York (1972).

    MATH  Google Scholar 

  18. J. Weidmann: Linear Operators in Hilbert Spaces, Springer-Verlag, Berlin (1980).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doebner, H.D., Tolar, J. (1991). Algebras and Symmetries — Quantum Mechanical Symmetry Breaking. In: Gruber, B., Biedenharn, L.C., Doebner, H.D. (eds) Symmetries in Science V. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3696-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3696-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6643-0

  • Online ISBN: 978-1-4615-3696-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics